• Title/Summary/Keyword: Temperature Lift

Search Result 162, Processing Time 0.029 seconds

Field Application of Mass Concrete Using Setting Time Difference of Super Retarding Agent for Reduction of Hydration Heat (초지연제의 응결시간차를 이용한 매스 콘크리트의 수화열 저감을 위한 현장 적용)

  • 전충근;심보길;손성운;신동안;오선교;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.11-14
    • /
    • 2004
  • In this paper, field application of mass concrete using setting time difference of super retarding agent is reported to reduce hydration heat of concrete placed at newly constructed apartment house in Busan. Horizontal placing lift is applied. According to test results. slump and air content meets the requirement of target values. For compressive strength, it exceeds the nominal strength ordered by the costumer. Compressive strength of concrete cured in place is achieved more than the values of nominal strength at l4days. For temperature history, maximum temperature of center at top section shows 58.5$^{\circ}C$, and at bottom section, 62.6$^{\circ}C$. According to naked eye's investigation, no hydration heat crack is observed at the surface of concrete.

  • PDF

Thermal Fatigue Characteristics of $\mu$ BGA Solder Joints with Underfill (언더필이 적용된 $\mu$p BGA 솔더 접합부의 열피로특성)

  • 고영욱;김종민;이준환;신영의
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.25-30
    • /
    • 2003
  • There have been many researches for small scale packages such as CSP, BGA, and Flipchip. Underfill encapsulant technology is one of the latest assembly technologies. The underfill encapsulant could enhance the reliability of the packages by flowing into the gap between die and substrate. In this paper, the effects of underfill packages by both aspects of thermal and mechanical reliabilities are studied. Especially, it is focused to value board-level reliability whether by the underfill is applied or not. First of all, The predicted thermal fatigue lifes of underfilled and no underfilled $\mu$ BGA solder joints are performed by Coffin-Manson's equation and FEA program, ANSYS(version 5.62). Also, the thermal fatigue lifes of $\mu$ BGA solder joints are experimented by thermal cycle test during the temperature, 218K to 423k. Consequently, both experimental and numerical study show that $\mu$ BGA with underfill has over ten times better fatigue lift than $\mu$ BGA without underfill.

Field Application of Setting Time Difference Method Using SRA for Reduction of Hydration Heat of Mass Concrete (매스콘크리트의 수화열저감을 위한 초지연제 응결시간차 공법의 현장 적용 -대전 가오지구 코오롱 하늘채 아파트 현장-)

  • Jeon Chung-Keun;Kim Jong;Shin Dong-An;Yoon Gi-Won;Oh Seon-Gyo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.21-24
    • /
    • 2005
  • In this paper, field application of mass concrete using setting time difference of super retarding agent is reported to reduce hydration heat of concrete placed at newly constructed apartment house in Daejeon. Horizontal placing lift is applied. According to test results,: slump and air content meets the requirement of target values. For compressive strength, it exceeds the nominal strength ordered by the costumer. For temperature history, maximum temperature of center at top section shows $25.6^{\circ}C$, and at bottom section, $35.4^{\circ}C$. According to naked eye's investigation, no hydration heat crack is observed at the surface of concrete.

  • PDF

Fabrication of a Micro Cooler using Thermoelectric Thin Film (열전박막을 이용한 마이크로 냉각소자 제작)

  • Han, S.W.;Choi, H.J.;Kim, B.I.;Kim, B.M.;Kim, D.H.;Kim, O.J.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1459-1462
    • /
    • 2007
  • In general a thermoelectric cooler (TEC) consists of a series of P type and N type thermoelectric materials sandwiched between two wafers. When a DC current passes through these materials, three different effects take place; Peltier effect, Joule heating effect and heat transfer by conduction due to temperature difference between hot and cold plates. In this study we have developed a micro TEC using $Bi_2Te_3$ (N type) and $Bi_{0.5}Sb_{1.5}Te_3$ (P type) thin films. In order to improve that performance of a micro TEC, we made 10 um height TE legs using special PR only for lift-off. We measured COP (coefficient of performance) and temperature difference between hot and cold connectors with current.

  • PDF

A Study on Combustion-Driven Oscillations in a Surface Burner (표면연소기의 연소진동음에 관한 연구)

  • Han, Heekab;Kwon, Youngpil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1582-1590
    • /
    • 1998
  • Combustion-driven oscillations in a surface burner have been investigated to clarify their characteristics. A model combustor is made and the oscillation frequencies are measured for various dimensions of the combustor. It is found that there are two modes of oscillations; one is the 'acoustic mode' at high frequencies, associated with the acoustic mode of the combustion system and the other is the 'combustion mode' at low frequencies around 100 Hz, associated with the instability of the flame. Acoustic mode is excited when the surface burner is placed where the phase of particle velocity leads that of acoustic pressure by $90^{\circ}$, for all the combustion conditions. Combustion mode is driven at high combustion rate by the lift of unstable flame near the lower limit of the combustible equivalence ratio. Combustion mode is greatly influenced by the inlet temperature of the premixed gas. When the inlet temperature is very high, the combustion mode does not occur.

Performance and Parameter Comparison between single stage and Two-Stage Compression/Absorption Heat Pump System (단단 및 2단 압축/흡수 히트펌스시스템의 성능 및 중요인자비교 분석)

  • Tian, Huaizhang;Park, Seong-Ryong
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.451-456
    • /
    • 2005
  • The mathematical model for the heat exchangers of absorber and desorber is made in the elementary control volume method and the thermodynamic properties of working fluid. water/ammonia mixture. are calculated by some fundamental subroutines in RefProp 7.0 and flash subroutines made by authors The simulation results show that two-stage cycle has higher COP than single stage if temperature lift is high: the performance of single stage compression cycle can be improved by increase of absorber pressure. but the performance of two-stage compression cycle can not be improved in this way : the compressor discharging temperature of two-stage compression is much lower than that of single stage cycle. which is very important to the safety operation of CA heat pump. Major parameter comparison between the cycles at their optimal configurations is also given.

  • PDF

A Case Study of Creep Crack Growth Remaining life Assessment for High Temperature Pressure Equipments (고온용 압력용기의 크리프 균열성장 잔여수명평가 사례 연구)

  • 백운봉;이해무;박종서;윤기봉
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.26-30
    • /
    • 2001
  • Creep crack growth lift of high temperature pressure equipments was assessed for various crack locations and for various material properties. Surface cracks at the inner and outer surface of the vessel in the axial and circumferential directions were considered. The crack was located in the weld metal, in the parent metal or at the weld interface. Results shored that the crack at the weld interface was the most dangerous one. The crack located outside is weaker than that located inside. Safety factors of the case in which improper material properties were used the to unavailability of the correct material properties were discussed.

  • PDF

Prediction Modeling of Unburned Hydrocarbon Oxidation in the Exhaust Port of a Propane-Fueled SI Engine (프로판 엔진의 배기 포트에서 탄화수소 산화 예측을 위한 모델링)

  • 이형승;박종범;최회명;민경덕;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.33-40
    • /
    • 2000
  • In order to investigate the exhaust structure and secondary oxidation of unburned hydrocarbon (HC) in the exhaust port, a numerical simulation was performed with 3-dimensional flow model and oxidation mechanism optimized for port oxidation. To predict the exhaust and oxidation process with consideration of flow, mixing, and temperature, 3-dimensional flow model and HC oxidation model were used with a commercial computational program, STAR-CD. The flow model were with moving grid for valve motion, which could predict the change of flow field with respect to valve lift. Optimization was performed to predict the HC oxidation with temperature range of 1200~1500K, low HC and oxygen concentration, existence of intermediate species, as typical in port oxidation. The constructed model could predict the port oxidation process with oxidation degree of 14~48% according to the engine operation conditions.

  • PDF

Analysis of the Influence of FOD by Aircraft Exhaust Wake (항공기 배기후류가 FOD 발생에 미치는 영향 분석)

  • Cho, Hwankee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.1
    • /
    • pp.12-19
    • /
    • 2022
  • The exhaust wake of an aircraft engine is discharged in a high temperature and high speed, which can damage objects such as an aircraft in the rear. The exhaust wake can lift small foreign substances lying on the ground or falling off, and the floating foreign substances can enter the intake duct of the aircraft moving from the rear and cause engine FOD (Foreign Object Damage). This study experimentally analyzed how the engine exhaust wake generated from military jet fighters affects the movement of foreign substances and evaluated the effects of foreign substances on the damaged area by measuring wake velocity. The simulation and field experimental results confirmed that the effect of exhaust wake increases as the rear position closer, and that foreign substances lifted by the wake can act as FOD to the adjacent rear aircraft.

Use of Modern Non­destructive Techniques in High Temperature Degradation of Material and Coatings

  • Lee, C.K.;Sohn, Y.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.29-39
    • /
    • 2003
  • The durability and reliability of thermal barrier coatings (TBCs) play an important role in the service reliability, availability and maintainability (RAM) of hot­section components in advanced turbine engines for aero and utility applications. Photostimulated luminescence spectroscopy (PSLS) and electrochemical impedance spectroscopy (EIS) are being concurrently developed as complimentary non­destructive evaluation (NDE) techniques for quality control and life­remain assessment of TBCs. This paper overviews the governing principles and applications of the luminescence and the impedance examined in the light of residual stress, phase constituents and resistance (or capacitance) in TBC constituents including the thermally grown oxide (TGO) scale. Results from NDE by PSLS and EIS are discussed and related to the microstructural development during high temperature thermal cycling, examined by using a variety of microscopic techniques including focused ion beam (FIB) in­situ lift­out (INLO), transmission and scanning transmission electron microscopy (TEM and STEM).

  • PDF