• Title/Summary/Keyword: Temperature History of Concrete

Search Result 137, Processing Time 0.054 seconds

Prediction of temperature distribution in hardening silica fume-blended concrete

  • Wang, Xiao-Yong
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.97-115
    • /
    • 2014
  • Silica fume is a by-product of induction arc furnaces and has long been used as a mineral admixture to produce high-strength, high-performance concrete. Due to the pozzolanic reaction between calcium hydroxide and silica fume, compared with that of Portland cement, the hydration of concrete containing silica fume is much more complex. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of concrete containing silica fume. The heat evolution rate of silica fume concrete is determined from the contribution of cement hydration and the pozzolanic reaction. Furthermore, the temperature distribution and temperature history in hardening blended concrete are evaluated based on the degree of hydration of the cement and the mineral admixtures. The proposed model is verified through experimental data on concrete with different water-to-cement ratios and mineral admixture substitution ratios.

Execution of Mass Concrete for Mat Foundation Using Setting Time Difference with Super Retarding Agent for Reducing Hydration Heat (초지연제의 응결시간차 공법을 이용한 기초 매트 콘크리트의 수화열 저감 시공)

  • Jeon Chung Keun;Yoon Chi Whan;Song Seung Heon;Shin Dong An;Oh Seon Gyo;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.144-147
    • /
    • 2004
  • In this paper, field application of mass concreting using super retarding agent(SRA) are discussed based on setting. time difference with SRA in big discount market in Chongju. Mechanical and physical properties of .concrete are investigated. Temperature history of concrete is also measured. Slump and air content meet the requirement of target value. Compressive strength of concrete exceeded the nominal strength with 24MPa. Compressive strength of SRA concrete is higher than that of plain concrete by about $3\~4\%$. For temperature history, peak temperature of concrete at middle section at top concrete layer reached $49.6^{\circ}C$ within 24hours, and at bottom concrete layer, $54.6^{\circ}C$ within 42hours. Based on the naked eye's observation, no crack was found at mass concrete.

  • PDF

An Experiment on the Structure Application of Cold Weather Concreting Using Anti-freeze Agent and Insulating Form (내한제 및 단열거푸집을 이용한 한중콘크리트의 구조체 적용 실험)

  • 김경민;손성운;김기철;오선교;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.21-26
    • /
    • 2002
  • This paper is intended to verify the efficiency of anti-freeze agent and insulating form by analyzing the temperature history and the property of strength-increase about the concrete that is placed in the insulating form and normal form, using new type anti-freeze agent in batcher plant According to the results about the temperature history, while the lowest temperature shows 3$^{\circ}C$ in case of normal concrete + euroform, 4$^{\circ}C$ in case of normal concrete + insulating form, it shows 6$^{\circ}C$ in anti-freeze agent + the insulating form, so the effect is most favorable. The compressive strength with mixing anti-freeze agent or not, shows high in order of standard curing, structure-managing and open air-placed specimen and the concrete mixing anti-freeze agent shows the highest compressive strength-increase.

  • PDF

Characteristics of Temperature History at Each Section of Mat Foundation Concrete Applying Double Bubble Sheets (이중버블시트를 적용한 매트 기초콘크리트의 부위별 온도이력 특성)

  • Kim, Tae-Cheong;Kim, Jong;Jeon, Chung-Keun;Shin, Dong-An;Oh, Seon-Kyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.13-14
    • /
    • 2016
  • This study is aimed to analyze temperature history at each section of mat foundation concrete applying double bubble sheets. The results of the study are as follows. Firstly, the results of measuring the temperature history indicate that the lowest external temperature has been recorded at -5.6℃ for the three-day measurement period. For the central section, the result indicates that the lower, center and upper part have all secured the concrete curing temperature of 18℃ or higher. This results are believed to have resulted from excellent heat insulation performance of double bubble sheets. For the edge section between the edge form and the concrete interface, the temperature has been measured, on average, approximately 12℃ lower than the central section. However, all measured sections have indicated the temperature of 5℃ or higher. Meanwhile, an analysis has been conducted through the estimation equation of compressive strength of maturity during the curing period in order to examine the possibility of early frost damage and the aspect of securing strength. It has been confirmed that the compressive strength is higher than 50°D·D, namely, 5MPa, on the 3rd day of the aging process, which allows early frost damage to be avoided.

  • PDF

A study on thermal properties of concrete using gang form coated with polyurethane (폴리우레탄 폼을 도포한 갱폼사용에 따른 콘크리트 온도이력특성)

  • Nam, Kyung-Yong;Won, Joon-Yuen;Kang, In-Seon;Jeon, Pan-Keun;Lee, Young-Do;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.11-12
    • /
    • 2011
  • This study examine Effect of Change of Compressive Strength of Concrete Members with Insulating Gang form on Temperature History of Concrete Positions. Test show, insulating gang forms differences and gang forms have 10℃ on peak point temperature of surface and Center if temperature history have 24Mpa by change of compressive strength. In addition, there have 14℃(16℃) on peak point temperature of surface and Center if temperature history have 40(60)Mpa. Therefore, insulating gang forms have an effect insulating performance.

  • PDF

An Experimental Study on the Curing and Temperature History of Cold Weather Concrete by Planar Surface Heater (전기발열시트에 의한 한중콘크리트의 양생 및 온도이력에 관한 실험 연구)

  • Kim, Hyung-Rae;Cho, Ho-Kyu;Kim, Chan-Soo;Jee, Nam-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.2
    • /
    • pp.135-139
    • /
    • 2003
  • The purpose of this study is to analyze the curing effect of planar surface heater for concreting in cold weather. Some experiments were conducted to evaluate the temperature history of concrete cured with heating sheets in the laboratory conditions. As the results, It was showed that the 130W/$m^2$-heater could raise the inner temperature more than $20^{\circ}C$ under the environmental condition of -5~$-20^{\circ}C$. And the temperature of concrete cured by the 200W/$m^2$-heater was 5~$10^{\circ}C$ higher than that of concrete cured by 130W/$m^2$-heater. Finally, through the curing by the planar surface heater during the first 1.5~2 days, it is possible to secure the sufficient maturity of concrete.

Temperature History of Concrete at Cold Weather Depending on the Kinds of Insulating Sheet (단열양생시트 종류 변화에 따른 한중콘크리트의 온도이력)

  • Jeon, Chung-Keun;Kim, Jong;Shin, Dong-An;Oh, Seon-Kyo;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.618-621
    • /
    • 2006
  • This paper is to investigate temperature history of cold weather concrete depending on insulation curing sheet kinds. Insulating effect according to curing sheet is shown in order of 5 layer bubble sheet, combination of PE form and 3 layer bubble sheet and 3 layer bubble sheet. It maintained above $10^{\circ}C$ of minimum temperature until the completion of initial curing period when bubble curing sheet was supplied regardless of curing sheet kinds. Five layer bubble curing sheet secure higher curing temperature than any other curing sheet applied in this experiment by as much as $2{\sim}3^{\circ}C$, which performed remarkable insulation effect. Concrete applied with curing sheet secured above $65^{\circ}D{\cdot}D$ of maturity, at which concrete had 5MPa of compressive strength at 3 days.

  • PDF

Evaluation of the Compressive Strength and Maturity According to Form Types in Low Temperature (저온양생하에서 거푸집 종류에 따른 콘크리트의 압축강도와 적산온도 특성 평가)

  • Choi, Si-Hyun;Mun, Young-Bum;Kim, Jae-Young;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.5-6
    • /
    • 2016
  • When concrete exposed to low temperatures, the free water in the concrete is freeze. If the pressure developed exceeds the tensile strength of the concrete, the cavity will dilate and rupture. It cause expansion and cracking, scaling and crumbling of the concrete. In this study, to prevent such damage, five different types of form were used. Concrete was poured into each form, cured for 7 days at temperature of -10℃. To measure the temperature history, two thermocouples were installed on each of the inside and outside. And to measure the compressive strength, collected core from each form. The maturity is formed by temperature history. The maturity and the compressive strength has a correlation.

  • PDF

Temperature History of Wall Concrete with Heat Insulating Curing Method Subjected to Severly Cold Climate (혹한온도 조건에서의 양생방법 변화에 따른 벽체 콘크리트의 온도이력 특성)

  • Son, Ho-Jung;Han, Sang-Yoon;Cheong, Sang-Hyeon;Ahn, Samg-Ku;Han, Cheon-Goo;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.51-52
    • /
    • 2011
  • This study is to propose a curing method for a concrete wall structure under severe cold climate. The curing methods of using heated cable, heated panel and insulated form were applied. Results showed that the concrete cured by the heated cable resulted in the highest temperature history and the highest strength development at 28 days. Further, it is believed that the curing methods of the heated panel and insulated form are also recommendable for the resistance of the early frost damage on the concrete in practice.

  • PDF

A Study on Effect of Specimen Thickness and Curing Temperature on Properties of Low Heat Concrete by Analysis Program for Heat of Hydration (수화열 해석 프로그램에 의한 저발열 콘크리트의 특성에 미치는 부재두께 및 양생온도의 영향에 관한 연구)

  • Lee, Seung-Min;Rho, Hyoung-Nam;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.31-36
    • /
    • 2008
  • This study aims to examine the effects of thickness of the concrete members and curing temperature on the properties of low heat concrete through heat of hydration analysis. Type of the members that was analyzed in the experiment is ternary mixture of ordinary portland cement, blast-furnace slag incorporating ratio(20%) and fly ash incorporating ratio(30%), which formed a mat foundation. Thicknesses of the concrete members were 1, 2 and 3(m) and three levels of curing temperatures were 10, 20 and 30(℃). They were applied to analyze the effects on the temperature and thermal cracking index. As a result, for temperature history, temperature difference between the central area and the surface tended to decrease as the thickness of the concrete members get thinner. For the temperature cracking index, on the other hand, the risk of cracking tended to decrease as the curing temperature gets higher and as the thickness gets thinner.

  • PDF