• Title/Summary/Keyword: Temperature Efficiency

Search Result 5,869, Processing Time 0.029 seconds

Performance Evaluation of Diesel Oxidation Catalysts for Diesel Vehicles (디젤자동차용 산화촉매의 성능 평가)

  • 최병철;박희주;정명근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.59-64
    • /
    • 2003
  • Recently, as people pay attention to the environmental pollution, the emissions of diesel engine have been a serious problem. We carried out the performance evaluation test of Diesel Oxidation Catalysts (DOC) for HSDI diesel engine equipped vehicles. The DOC, basically coated with Pt catalyst, was manufactured with various washcoat materials. It was found that CO conversion efficiency depends on temperature, but THC conversion efficiency is dominated by temperature and space velocity. The THC and CO conversion efficiencies of aged catalysts were increased with additions of $ZrO_2$ and zeolite B in the washcoat. We found that DOC performance changes with coating techniques, even through it has same washcoat materials. The DOC coated by high temperature washcoat coating technology showed good conversion efficiency than low temperature washcoat coated DOC.

Exergy Analysis of Solar Collector

  • 이석건;이현우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.74-79
    • /
    • 1990
  • Important factors in evaluating solar collcetor efficiency are solar radiation, temperature and flow rate of the working fluid. The effects of these factors on the energy and the exergy gained by water, the working fluid, from the collector were analyzed. The results indicated that the collector efficiency and the energy and the exergy gained by the water from the collcetor increased with the increase of solar radiation. According to the exergy analysis, as the water temperature at the inlet of the collector increased, the exergy gained by the water increased while the energy gained by the water decreased. The water temperature at the outlet of the collector could be calculated with a mean error of 2.8%, and the energy and the exergy could be calculated theoretically with mean errors of 16.8% and 19.1%, respcetively.

  • PDF

A Study on Generator Temperature and Power Converter Efficiency according to change of Wind Velocity (풍속 변화에 따른 발전기 온도 및 전력변환장치 효율에 관한 연구)

  • Song, Young-Sang;Han, Woon-Ki;Jung, Jin-Soo;Lim, Hyun-Sung;Cho, Sung-Koo;Jeon, Taehyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.8-13
    • /
    • 2015
  • Recently, because a renewable power source must operate as a constant rate in accordance with RPS(Renewable Portfolio Standard), the study of the renewable power sources has been ongoing. Especially because of noise of wind turbine, troubleshooting, and urban greening business, research related with small wind turbine are underway. The economics and reliability are important parts for the activation of small wind turbine, such as solar energy. In this paper, by analyzing the temperature variations for each location and efficiency of power conversion devices in accordance with short period wind speed changes in simulation test, we reviewed the safety about temperature variations of wind generator and the method of selection of power converter.

Effect of Water Temperature on Growth and Body Composition of Juvenile Mandarin Fish Siniperca scherzeri (사육 수온에 따른 쏘가리(Siniperca scherzeri) 치어의 성장 및 체조성 변화)

  • Kim, Yi-Oh;Lee, Sang-Min
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.5
    • /
    • pp.607-611
    • /
    • 2016
  • This study was conducted to investigate the effects of different water temperatures on growth, survival, biochemical composition, and blood physiological parameters of juvenile mandarin fish Siniperca scherzeri. Feed-trained juvenile fish were subjected to four water temperatures (20, 23, 26 and 29℃) with two replicate groups. The fish were fed to apparent satiation twice daily using a formulated diet containing 55% crude protein and 6% crude lipid. After the 8-week feeding trial, survival was >96% in all groups. Weight gain and feed efficiency of fish reared at 26 and 29℃ were higher than those reared at 20℃. The protein efficiency ratio, daily feed intake, and whole body proximate composition were not affected by water temperature. These results indicate that a suitable water temperature range for optimal growth and feed efficiency of juvenile mandarin fish is 26-29℃ under these experimental conditions.

A comparing on the use of Centrifugal Turbine and Tesla Turbine in an application of Organic Rankine Cycle

  • Thawichsri, Kosart;nilnont, Wanich
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.58-66
    • /
    • 2015
  • This paper aims to compare the use of Centrifugal Turbine and Tesla Turbine in an application of Organic Rankine Cycle (ORC) Machine using Isopentane as working fluid expanding. The working fluid has boiling point below boiling water and works in low-temperature sources between $80-120^{\circ}C$ which can be produced from waste heat, solar-thermal energy and geothermal energy etc. The experiment on ORC machine reveals that the suitability of high pressure pump for working fluid has result on the efficiency of work. In addition, Thermodynamics theory on P-h diagram also presented the effect of heat sources' temperature and flow rate on any work. Thus, the study and design on ORC machine has to concern mainly on pressure pump, flow rate and optimized temperature. Result experiment and calculate ORC Machine using centrifugal Turbine efficiency better than Tesla turbine 30% but Tesla Turbine is cheaper and easily structure. Further study on the machine can be developed throughout the county due to its low cost and efficiency.

Effects of Turbine Inlet Temperature on Performance of Regenerative Gas Turbine System with Afterfogging

  • Kim, Kyoung-Hoon;Kim, Se-Woong;Ko, Hyung-Jong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.4
    • /
    • pp.141-148
    • /
    • 2009
  • Afterfogging of the regenerative gas turbine system has an advantage over inlet fogging in that the high outlet temperature of air compressor makes the injection of more water and the recuperation of more exhaust heat possible. This study investigates the effects of turbine inlet temperature (TIT) on the performance of regenerative gas turbine system with afterfogging through a thermodynamic analysis model. For the standard ambient conditions and the water injection ratios up to 5%, the variation of system performance including the thermal efficiency is numerically analyzed with respect to the variations of TIT and pressure ratio. It is also analyzed how the maximum thermal efficiency, net specific work, and pressure ratio itself change with TIT at the peak points of thermal efficiency curve. All of these are found to increase almost linearly with the increases of both TIT and water injection ratio.

Evaluation of Bioremediation Efficiency of Crude Oil Degrading Microorganisms Depending on Temperature (온도에 따른 원유분해미생물의 생물학적 정화효율 평가)

  • Kim, Jong-Sung;Lee, In;Jeong, Tae-Yang;Oh, Seung-Taek;Kim, Guk-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.72-79
    • /
    • 2016
  • Bioremediation is one of the most effective ways to remediate TPH-contaminated sites. However, under actual field conditions that are not at the optimum temperature, degradation of microorganisms is generally reduced, which is why the efficiency of biodegradation is known to be significantly affected by the soil temperature. Therefore, in this study, the labscale experiment was conducted using indigenous crude oil degrading microorganisms isolated from crude oil contaminated site to evaluate the remediation efficiency. Crude oil degrading microorganisms were isolated from crude oil contaminated soil and temperature, which is a significant factor affecting the remediation efficiency of land farming, was adjusted to evaluate the microbial crude oil degrading ability, degradation time, and remediation efficiency. In order to assess the field applicability, the remediation efficiency was evaluated using crude oil contaminated soil (average TPH concentration of 10,000 mg/kg or more) from the OO premises. Followed by the application of microorganisms at 30℃, the bioremediation process reduced its initial TPH concentration of 10,812 mg/kg down to 1,890 mg/kg in 56 days, which was about an 83% remediation efficiency. By analyzing the correlation among the total number of cells, the number of effective cells, and TPH concentration, it was found that the number of effective microorganisms drastically increased during the period from 10 to 20 days while there was a sharp decrease in TPH concentration. Therefore, we confirmed the applicability of land farming with isolated microorganisms consortium to crude oil contaminated site, which is also expected to be applicable to bioremediation of other recalcitrant materials.

An experimental study on emission control of HC and CO due to oxidizing catalyst (산화촉매에 의한 자동차 배출가스중 HC 및 CO의 정화에 관한 실험적 연구)

  • 한영출;최규훈
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.46-53
    • /
    • 1981
  • This paper describes emission control of hydrocarbon and carbon-monoxide due to oxidizing catalyst. The experiment was performed on a precious metal pelleted catalyst(Pt). The factors of the efficiency for purification due to oxidizing catalyst are space velocity, temperature, composition of exhaust gas and supplementary air. The experiment was carried out to control the factors of efficiency for purification. The results of experimental study show that temperature of catalytic converter, supplementary air and space velocity affected the efficiency for purification of hydrocarbon and carbon monoxide.

  • PDF

Heat Transfer and Combustion Characteristics and Performance of U type Radiation Tube Burner with fin (핀 부착 U형 복사튜브 버너의 열전달 및 연소성능 실험)

  • Lee, Hyun-Chan;You, Hyun-Seok;Lee, Joong-Seong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.516-521
    • /
    • 2001
  • Present study deals with combustion characteristics and performance of U type radiation tube burner with fin which combustion capacity is 30,000kcal/hr and the maximum capacity of supply fuel is $30Nm^{3}/hr$. Temperature difference of radiation tube is about $173^{\circ}C$ at 25% capacity and this show relatively small temperature difference for convenient type. Thermal efficiency is satisfactory as $72{\sim}81%$. Also, radiative efficiency of radiation tube is $52{\sim}73%$. The efficiency of heat exchanger is $27{\sim}37%$. Therefore, radiative efficiency is improved to $1{\sim}10%$ after installing fin.

  • PDF

Performance Improvement of a Scroll Compressor by Heat Transfer Analysis (열전달 해석을 통한 스크롤 압축기 성능 개선)

  • Hong, S. W.;Rew, H. S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.4 s.9
    • /
    • pp.22-29
    • /
    • 2000
  • Numerical analysis using three dimensional finite volume method for the discretization, adaptive grid method for the numerical accuracy, multiple rotating frame method for the rotating body and the standard $k-{\epsilon}$ model for the turbulent flow was performed to understand the heat transfer phenomena and to improve the efficiency of the scroll compressor. The temperature measurement was carried out under ARI condition. It was found that the fluid temperature in the compressor was predicted accurately while the temperature of the motor coil showed large discrepancy between the calculation and experiment due to the large anisotropy of the conductivity and non homogeneity. We found that the efficiency of the compressor depends on the inlet temperature of the compressing part and the flow pattern around the inlet region of the compressing part influences the inlet temperature due to high surface temperature of the main frame. The efficiency of the compressor using Coanda effect is higher than the previous one because the smooth suction at the inlet region of the compressing part leads to low heat transfer to the refrigerant of the compressor.

  • PDF