• Title/Summary/Keyword: Temperature Drop Efficiency

Search Result 145, Processing Time 0.023 seconds

An Experimental Study on Effects of Soot Loading and Mass Flow Rate on Pressure Drop and Heat Transfer in Catalyzed Diesel Particulate Filter (촉매 코팅 DPF의 soot loading과 유량 변화에 따른 압력강하 및 열전달에 관한 실험적 연구)

  • Cho, Yong-Seok;Noh, Young-Chang;Park, Young-Joon;Kim, Duk-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.72-78
    • /
    • 2007
  • A diesel particulate filter causes progressive increase in back pressure of an exhaust system due to the loading of soot particles. To maintain the pressure drop caused by DPF under proper level, a regeneration process is mandatory when excessive loading of soot is detected in the filter. It is a major reason why the relation between the amount of soot and the pressure drop in a DPF becomes crucial. On the other hand, pressure drop varies with not only the soot loading but also conditions of exhaust gas such as mass flow rate. Therefore, the relation among them becomes complicated. Furthermore, the characteristics of heat transfer in a DPF is another crucial parameter in order for the filter to avoid thermal crack during regeneration period. This study presents characteristics of pressure drop under various conditions of soot loading and mass flow rate in catalyzed diesel particulate filter. This study also shows characteristics of heat transfer in DPF when high temperature gas flows into the filter. Experiments reveal that the soot loading and mass flow rate affect characteristics pressure drop independently. Experiments also indicate that the amount of coating material has little influence on pressure drop with changes in soot loading and mass flow rate. However, increased catalyst coating may lead to the improved heat transfer which is efficiency to reduce thermal stress of the filter.

Performance Enhancement of Solar Thermal Storage Tank with Heat Exchange Coils (Part 1 : Verification Experiment) (열교환코일 내장형 태양열 축열조의 성능향상 (제1보 실증실험))

  • Lee, Uk-Jae;Hong, Hiki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.213-219
    • /
    • 2015
  • A thermal storage tank with internal heat exchange coils is commonly used in solar thermal systems with a collector area below $100m^2$. The coils are installed in the lower part of the tank because the temperature of the upper part of the tank can drop if the outlet temperature of the collector becomes lower than the upper temperature of the tank, which is a kind of temperature reversal. As an alternative to the well-mixed storage tank with lower coil only, we have proposed a tank with lower and upper coils and have achieved superior thermal stratification in the tank, which results in increased collector efficiency and solar fraction. But, the phenomenon of temperature reversal was often observed in the tank when the load or solar radiation changed rapidly. In the present work, revised control was successfully applied, i.e., to heat only the lower coil using a three way valve if temperature reversal occurs and to operate the collector at a low flow rate when the quality of solar radiation is not good.

A Study on Heat Transfer Characteristics in the Air Side of Louvered Fin Heat Exchanger (루우버핀형 열교환기의 공기측 열전달 특성에 관한 연구)

  • Kim, Sun-Jung
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • For the study of an effect that fin thickness and shape of heat exchanger have on the elevation of heat transfer efficiency, we make models of plate fin type heat exchanger and louvered fin type heat exchanger which was given a transformation of fin thickness in plate f)n type heat exchanger and louvered fin type heat exchanger which are often used now. And the effect of fin thickness on pressure drop and characteristics of heat transfer was experimented and analysed when air velocity and temperature of plate heating was a variable. The results of experiment shows below. Pressure drop shows larger in louvered fin type exchanger than in plate fin type exchanger, size of pressure drop shows like this order that fin thickness is 0.3mm, 0.2mm, 0.1mm. Mean heat transfer coefficient shows higher in louvered fin type exchanger than in plate fin type exchanger, size of mean heat transfer coefficient by fin thickness shows same in both case in louvered fin type heat exchanger and plate fin type exchanger like this order that fin thickness is 0.1mm, 0.2mm, 0.3mm.

Effect of Atomization Characteristics of Twin Fluid Nozzle on Urea Pyrolysis (이유체 노즐 미립화 특성이 요소 열분해에 미치는 영향)

  • Ku, Kun Woo;Chung, Kyung Yul;Yoon, Hyun Jin;Seok, Ji Kwon;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.162-167
    • /
    • 2015
  • Recently, there has been rising interest in applying urea-SCR systems to large marine diesel engines because the International Maritime Organization (IMO) has decided to enforce NOx reduction regulations. Generally, in the case of urea-SCR of the marine diesel engine, a type of twin fluid atomizer has been using for injection of the urea solution. This study conducted to investigate an effect of the atomization of external-mixing twin fluid nozzle on the conversion efficiency of reductant. The lab-scaled experiment device was installed to mimic the urea-SCR system of the marine diesel engine for this study. In a low temperature inflow gas condition which is similar with the exhaust temperature of large marine diesel engine, this study found that the conversion efficiency of reductant of when relative big size urea solution droplets are injected into exhaust gas stream can be larger than that of when small size urea solution droplets are injected. According to results of this study, the reason was associated with decrease of reaction rate constant caused from temperature drop of inflow gas by assist air of twin fluid atomizer.

Numerical study on operating parameters of autothermal reformer for hydrogen production (수소생산을 위한 자열개질기 작동조건의 수치해석 연구)

  • Park, Joon-Guen;Lee, Shin-Ku;Lim, Sung-Kwang;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.507-510
    • /
    • 2008
  • Characteristics of an autothermal reformer at various operating parameters have been studied in this paper. Numerical method has been used, and simulation model has been developed for the analysis. Full Combustion reaction, Steam Reforming(SR) reaction, Water-Gas Shift(WGS) reaction, and Direct Steam Reforming(DSR) reaction are assumed as dominant chemical reactions in the autothermal reformer. Simulation results are compared with experimental results for code validation. Operating parameters of the autothermal reformer are inlet temperature, Oxygen to Carbon Ratio(OCR), Steam to Carbon Ratio(SCR), and Gas Hourly Space Veolcity(GHSV). SR reaction rate decreases with low inlet temperature. If OCR is increased, $H_2$ yield is increased but optimal point is suggested. WGS reaction is activated with high SCR. When GHSV is increased, reforming efficiency is increased but pressure drop may decrease the system efficiency.

  • PDF

Heat Source Modeling of GMAW Considering Metal Transfer (용적이행을 고려한 GMA 용접의 열원 모델링)

  • 정기남;이지혜;이재영;유중돈
    • Journal of Welding and Joining
    • /
    • v.22 no.2
    • /
    • pp.69-77
    • /
    • 2004
  • The Gaussian heat source has been widely used to simulate the heat flux of the welding we, and applied to calculating the temperature distribution of a workpiece. The conventional two-dimensional Gaussian heat source for the GMAW is modified in this work by decomposing the arc heat into heats of the cathode and metal transfer. The efficiency and effective arc radius of each heat source are determined analytically for the free-flight mode such as the globular and spray modes. The temperature distribution and weld geometry are calculated using the finite element method, and distribution of the drop heat is found to have significant effects on the penetration. The predicted results show good agreements with the available experimental results, especially with the penetration.

Experimental Study on Drag Reduction Effects of New Non-Ionic Surfactants

  • Tae, Choon-Sub;Cho, Sung-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.4
    • /
    • pp.147-155
    • /
    • 2006
  • The drag reduction (DR) and heat transfer efficiency reduction (ER) of non-ionic surfactant were investigated as a function of fluid velocity, temperature, and surfactant concentration. An experimental apparatus consisting of two temperature controlled water storage tanks, pumps, test specimen pipe and the piping network, two flow meters, two pressure gauges, a heat exchanger, and data logging system was built. From the experimental results, it was concluded that existing alkyl ammonium surfactant (CTAC Cethyl Trimethyl Ammonium Chloride) had DR of $0.6{\sim}0.8$ at $1,000{\sim}2,000ppm$ concentration with fluid temperature ranging between $50{\sim}60^{\circ}C$. However, the DR was very low when the fluid temperature was $70{\sim}80^{\circ}C$. The new amine oxide and betaine surfactant(SAOB Stearyl Amine Oxide + Betaine) had lower DR at fluid temperatures ranging between $50{\sim}60^{\circ}C$ compared with CTAC. However, with fluid temperature ranging between $70{\sim}80^{\circ}C$ the DR was $0.6{\sim}0.8$ when the concentration level was $1,000{\sim}2,000ppm$.

Development of Nano Ceramic Filter for the Removal of Ultra Fine Particles (초미세입자 제거를 위한 고온용 나노 세라믹 필터 개발)

  • Kim, Jong-Won;Ahn, Young-Chull;Yi, Byeong-Kwon;Jeong, Hyeon-Jae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Airborne particulate matters have two modes of size distributions of coarse mode and fine mode. The coarse mode which is formed by break down mechanism of large particles has a peak around the $100\;{\mu}m$, and the fine mode formed by condensation and build up mechanism of evaporated vapors has a peak at several ${\mu}m$. The coarse mode particles can be removed easily by conventional collecting equipments such as a cyclone, an electrostatic precipitator, and a filter, however the fine mode particles can not be collected easily. Usually the fine mode particles are generated in the high temperature conditions especially through boilers and incinerators, so the high efficient and temperature filter is essential for the filtration. In this study, a nano ceramic filter for the removal of fine particles in the high temperature is developed and tested for several characteristics. The nano ceramic filter has double layer of micro and nano structure and the pressure drop and the filtration efficiency for $0.31\;{\mu}m$ at 3 cm/s are 15.45 mmAq, and 96.75%, respectively. The thermal conductivity is $0.038\;W/m{\cdot}K$, and the coefficient of water vapor permeability is $3.63\;g/m^2{\cdot}h{\cdot}mmHg$. It is considered that the sensible heat exchange rate is very poor because the low thermal conductivity but it has high potential to exchange latent heat.

Study of Catalytic Filter on the Removal of Dust and HVOC (촉매필터를 이용한 먼지 및 HVOC 제거 특성 연구)

  • Jeong, Soon Kwan;Park, Young Ok
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.80-85
    • /
    • 2008
  • Catalytic filter is capable of performing shallow bed dust filtration plus a catalytic reaction, promoted by a catalyst deposited in its inner structure. Such a feature may allow potential cost and space reduction in several environmental applications. Dust filtration and halogenated volatile organic compound (1,2-dichlorobenzene) destruction were carried out in a lab-scale reactor. $WO_3-V_2O_5/TiO_2$ supplied by MaGreen, which showed high catalytic acitivity at low temperature, was used as a catalyst. P-84 that can be operated under $250^{\circ}C$ was used as a felt. The catalytic activity and filtration efficiency of catalytic filters were investigated under the operating conditions, including temperature, face velocity, and dust concentration. The catalytic activity of catalytic filter increased with increasing temperature and the amount of catalyst loaded. The test results showed that the filtration efficiency was primarily affected by the face velocity. Pressure drop variations as a function of time were investigated for a variety of conditions. In case of virgin filter, a dramatic decrease in the pulse interval and a slightly increase in the base line pressure drop were observed. A relatively slow pressure drop build-up was recorded for the catalytic filter due to smooth and slippery surface characteristics of nanofiber. The catalytic filter indicated that high filtration efficiency over 99.98% and high catalytic activity over 90% at 1 m/min and $210^{\circ}C$.

Evaluation on Removal Efficiency of Cryptosporidium using Surrogate in Pilot Plant of Conventional Water Treatment Process (표준정수처리 파일럿에서 Cryptosporidium 유사체를 이용한 Cryptosporidium 제거효율 평가)

  • Park, Sangjung;Chung, Hyenmi;Choi, Heejin;Jun, Yongsung;Kim, Jongmin;Kim, Taeseung;Chung, Dongil
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.399-405
    • /
    • 2010
  • In order to quantify removal efficiency of Cryptosporidium in water treatment process and evaluate factors influencing removal efficiency of Cryptosporidium in each step of water treatment process, large pilot plant system ($100m^3/day$) and Cryptracer, surrogate of Cryptosporidium, were used. The removal efficiency of Cryptracer was around 0.8~1 log in coagulation process and 3.3~4.8 log in sand filtration process under ordinary environmental conditions. Factors influenced removal efficiency of Cryptracer were high fluctuate turbidity and water temperature. High fluctuate turbidity made difficult to adjust optimum PAC concentration, caused to drop removal efficiency of coagulation process (0.5 log). Inadequate coagulation process influenced to sand filtration process (2.1 log), caused to decline of removal efficiency in the whole process (2.6 log). Low temperature below $2^{\circ}C$ also influenced coagulation process (0.6 log). Therefore, It is shown that careful attention in the control of Cryptosporidium is needed in flood period, when high fluctuate turbidity would be, and winter period of low temperature.