• 제목/요약/키워드: Temperature Difference Measurement

검색결과 446건 처리시간 0.033초

광 위상지연기를 이용한 온도측정 (Temperature measurements using optical retarder)

  • 전상민;김용평
    • 한국광학회지
    • /
    • 제13권3호
    • /
    • pp.240-244
    • /
    • 2002
  • 광 위상지연기에서 두 편광축 사이의 위상차가 온도의 함수라는 현상을 이용하여 새로운 온도측정기를 제안하였다. 특정한 파장의 입력광이 일정한 길이의 광 위상지연기를 통과하면 온도에 따라 그 편광상태가 바뀌게 된다. 이때의 편광성분을 진행방향에 수직한 두 축 성분으로 분리하여 그 출력을 비교하면 광 위상지연기의 온도를 결정할 수 있다. 본 연구에서는 광 위상지연기로 길이 100mm의 편광유지 광섬유를 이용하여 온도측정기를 구현하였다. 온도에 대한 위상차 변화율은 0.236$^{\circ}C$$_{-1}$이었고, -2.6$^{\circ}C$~3.4$^{\circ}C$에서 $\pm$0.038$^{\circ}C$의 측정오차를 보였다.

가스센서를 이용한 부분방전특성에 따른 유중수소가스 측정연구 (Measurement Technology of the Dissolved Hydrogen Gas Due to Partial Discharge in Oil using Gas Sensor)

  • 허종철;선종호;강동식;정주영;추영배;박정후
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1784-1789
    • /
    • 2009
  • This paper describes the measurement technology of the dissolved hydrogen gas due to partial discharge in oil using gas sensor. For higher resolution and less error in measurement of the dissolved hydrogen gas in oil, the sensor outputs with ambient temperature which affect the sensor output characteristics should be considered. The sensor output trends with ambient temperature and the properties of the dissolved hydrogen gas in oil with partial discharge characteristic were analyzed through the test results. It was indicated that the sensor peak and the base voltage with measuring time were affected by ambient temperature and the measurement errors of the sensor output by temperature were reduced by using the difference between the peak and the base voltage rather than just the peak voltage. In addition, the hydrogen gas sensor outputs were increased with the increase of partial discharge energy.

체온측정에 필요한 최단적정시간규명을 위한 실험적 연구 (An Experimental Study on the Shortest optimum time for Body Temperature measurement)

  • 홍여신;이선옥
    • 대한간호학회지
    • /
    • 제5권2호
    • /
    • pp.38-50
    • /
    • 1975
  • This study was conducted to find the shortest optimum time for taking oral temperature and axillary temperature, which does not affect reliability of body temperature. For this purpose, first, the time at which all the samples are reaching maximum temperature is identified Second, the mean maximum temperature is compared with the mean temperature of each consecutive measurement by T-test to find the time at which no significant changes in temperature occurs along time sequence. Third, optimum temperatures are set at points of -0.2℉, -0.4℉, -0.6℉, -0.8℉, -1.0℉, -1.2℉, -1.4℉, from maximum temperature. A point of time at which 90% of samples reach at optimum temperature is identified and defined as optimum time. The study sample, a total of 164 cases were divided into two groups according to their measured body temperature. The group with body temperature below 37 $^{\circ}C$(A group) and above 37$^{\circ}$1'C (B group) were compared on the time required to reach maximum temperature and optimum temperature. The results are as follow. 1. The time required for total sample to reach maximum temperature was 13 minutes in both groups by oral method, 15 minutes in A group and 13 minutes in B group by axillary method. Time required for 90 % of cases reach maximum temperature by oral method was 10 minutes in both group. By axillary method, 12 minutes in A group. (Ref: table 2) 2. Statistical analysis by means of T-test, the time which does not show a significant change by oral method were 12 minutes in A group and 11 minutes in B group, and by axillary method 14 minutes in A group and 11 minutes in B group. (Ref: table 5, 6.) 3. Where optimum temperature was defined as maximum temperature minus 0.2 ℉, optimum time was found 8 minutes in both groups by oral method, and 11 minutes in A group and 9 minutes in B group by axillary method 4. Where optimum temperature was defined as maximum temperature minus 0.4 ℉, optimum time was found 7 minutes in A group and 6 minutes in B group by oral method, and 9 minutes in A group and 7 minutes in B group by axillary method 5. Where optimum temperature was defined as maximum temperature minus 0.8 ℉, optimum time was found 6 minutes in A group and 6 minutes in B group by axillary method (Ref: table 7, 8, 9, 10) 6. The commonly practiced temperature taking time, 3 minutes in oral method and 5 minutes in axillary method can be accepted as pertinent when physiological variation of body temperature at the mean level of -1, 2 ℉ is accepted. 7. The difference in time required to resister maximum temperature was compared between the group with body temperature below 37$^{\circ}C$ and above 37$^{\circ}$1'C, and found no significant difference in oral mettled and 1 - 4 minute difference in axillary method with shorter time requirement in feverish group.

  • PDF

시계열 분석을 이용한 부산지역 계절식물의 개화시기 변화 (Changes of Flowering Time in the Weather Flora in Susan Using the Time Series Analysis)

  • 최철만;문성기
    • 한국환경과학회지
    • /
    • 제18권4호
    • /
    • pp.369-374
    • /
    • 2009
  • To examine the trend on the flowering time in some weather flora including Prunus serrulata var. spontanea, Cosmos bipinnatus, and Robinia pseudo-acacia in Busan, the changes in time series and rate of flowering time of plants were analyzed using the method of time series analysis. According to the correlation between the flowering time and the temperature, changing pattern of flowering time was very similar to the pattern of the temperature, and change rate was gradually risen up as time goes on. Especially, the change rate of flowering time in C. bipinnatus was 0.487 day/year and showed the highest value. In flowering date in 2007, the difference was one day between measurement value and prediction value in C. bipinnatus and R. pseudo-acacia, whereas the difference was 8 days in P. mume showing great difference compared to other plants. Flowering time was highly related with temperature of February and March in the weather flora except for P. mume, R. pseudo-acacia and C. bipinnatus. In most plants, flowering time was highly related with a daily average temperature. However, the correlation between flowering time and a daily minimum temperature was the highest in Rhododendron mucronulatum and P. persica, otherwise the correlation between flowering time and a daily maximum temperature was the highest in Pyrus sp.

P018 Comparison between Cutoff Probe and Langmuir Probe: Focused on Measurement Technique Error

  • 권준혁;김대웅;유신재;신용현
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.235.1-235.1
    • /
    • 2014
  • Precise measurement of plasma parameters including density and temperature is the most essential part for understanding plasma characteristics. To persue more accurate measurement, it is very important to understand the intrinsic error of the measurement method. In this paper, we performed the plasma measurement with different method; langmuire probe and cutoff probe. Both measurement technology are known to be exactly correlate with etch other. We conducted the four set of same experiments process by diffrent persons to observe the intrinsic error based on measurement tools. As a result, the cutoff probe is relatively reliable then the Langmuir probe. This difference is analyzed to be intrinsic since it cames from the inevitable error such as manufacturing of probe tip. From this study, we sure that it is good decision to choose cutoff probe as repeatable measurement independent with intrinsic human factor.

  • PDF

측정부위별 신생아의 체온 비교 : 고막기준 직장체온, 직장체온, 액와체온, 복부체온 (Comparison by Measurement Sites in Temperature of Neonates : Ear-based rectal, Rectal, Axilla, Abdominal Temperature)

  • 김화순;안영미
    • 대한간호학회지
    • /
    • 제29권4호
    • /
    • pp.903-916
    • /
    • 1999
  • The purpose of this study was to compare the ear-based rectal temperature measured with a tympanic thermometer with the rectal temperature measured with a glass mercury thermometer in order to test the accuracy of tympanic thermometer and to determine relationship among rectal, axilla, and abdominal temperature in neonates. The samples consisted of thirty four neonates admitted to the neonatal intensive care unit and nursery at an university affiliated hospital. The mean age of the subjects was 4.9 days. The ear-based rectal temperatures were taken with a tympanic thermometer in rectal mode (First Temp Genius 3000). Rectal and axilla temperatures were taken with a glass mercury thermometer, Abdominal temperature was continuously monitored with the probe connected to the servo controller of incubator. The results of the study can be summarized as follows : 1. Intrarater comparison : Agreement between the first and the second ear-based rectal temperature was 97% within 0.1$^{\circ}C$. 2. Comparison of ear-based rectal temperature and the rectal temperature from a glass mercury thermometer : ear-based rectal temperature ranged from 36.95$^{\circ}C$d to 37.95$^{\circ}C$, with a mean of 37.58$^{\circ}C$(SD=0.22$^{\circ}C$). Rectal temperature from a glass mercury thermometer ranged from 36.2$0^{\circ}C$ to 37.2$0^{\circ}C$, with a mean 36.75$^{\circ}C$(SD=0.29). The mean difference between both temperatures was 0.84$^{\circ}C$. The correlation coefficient between both temperatures was r=0.77(p=0.00). 3. Comparison of rectal and axilla temperature : Axilla temperature ranged from 35.8$0^{\circ}C$ to 37.1$0^{\circ}C$, with a mean of 36.55$^{\circ}C$. The mean absolute difference between the rectal and axilla temperature was 0.23$^{\circ}C$. The correlation coefficient between rectal and axilla was r=0.67. 4. Comparison of axilla and abdominal temperature : Abdominal temperature ranged from 36.2$0^{\circ}C$ to 37.0$0^{\circ}C$, with a mean of 36.58$^{\circ}C$. The mean absolute difference between axilla and abdominal temperature was only -0.03$^{\circ}C$. Findings of this study suggest that ear-based rectal temperature overestimates the actual rectal temperatures in neonates. Therefore, the interchangeble use of both temperatures in clinics seems problematic. The site offset(adjustment value) programmed in rectal mode of the tympanic thermometer needs to be readjusted. Choosing one optimal site for temperature measurement for each patient, and using the specific site consistently would result in more consistent measurements of changes in body temperature, and thus can be more effective in diagnosing fever or hypothermia.

  • PDF

In-plane ESPI를 이용한 고온에서 STS430의 열팽창계수 측정 (Thermal Expansion Coefficient Measurement of STS430 at High Temperature by In-plane ESPI)

  • 김경석;강기수;장호섭
    • 한국정밀공학회지
    • /
    • 제21권11호
    • /
    • pp.69-74
    • /
    • 2004
  • This paper presents ESPI system for the measurement of thermal expansion coefficient of STS430 up to 1,00$0^{\circ}C$ . Existing methods, strain gauge and moire have the limitation of contact to object and do not supply the coefficient up to 80$0^{\circ}C$ . There needs to measure the data up to 80$0^{\circ}C$, because heat resistant materials have high melting temperature up to 1,000'E In previous studies related to thermal strain analysis, the quantitative results have not reported by ESPI at high temperature, yet. In-plane ESPI and vacuum chamber for the reduction of air turbulence and oxidation are designed for the measurement of the coefficient up to 1,00$0^{\circ}C$ and speckle correlation fringe pattern images are processed by commercial image filtering tool-smoothing, thinning and enhancement- to obtain quantitative results, which is compared with references data. The comparison shows two data are agreed within 4.1% blow $600^{\circ}C$ however, there is some difference up to $600^{\circ}C$. Also, the incremental ratio of the coefficient is changed up to 80$0^{\circ}C$ . The reason is the phase transformation of STS430 probably begins at 80$0^{\circ}C$

Calculation of Adequate Remodeling Period for The Improvement of Thermal Insulation Performance of External Walls in Deteriorated Apartments

  • Choi, Doo-Sung;Lee, Myung-Eun
    • KIEAE Journal
    • /
    • 제17권2호
    • /
    • pp.5-12
    • /
    • 2017
  • Purpose: Under the purpose of presenting the adequate remodeling period for the improvement of thermal insulation performance of external walls in deteriorated buildings, the change in external wall and residential environment problem(dew condensation) due to aged deterioration after the apartments were constructed in Korea were analyzed. Method: Temperature Difference Ratio Outside(TDRo) and Heat Flow Meter(HFM) were used as measurement methods to evaluate the thermal insulation performance of deteriorated buildings. For TDR evaluation, thermo-graphic camera was used to measure and analyze the surface temperature of external wall. Also, dew condensation evaluation was analyzed using the Temperature Difference Ratio Inside(TDRi). Result: As a result of analyzing thermal performance through TDRo, the first decline point of thermal insulation performance began after 14-16 years have passed since construction was completed, and after 20 years have passed the decline point of thermal insulation performance reappeared. As a result of analyzing U-value with HFM measurement method, the decline rate of external wall's thermal insulation performance is lower than 2% in average at around 5 years after completion, and 8.7% in average at 10-15 years, and over 10.2% in average at 20 years.

형광 나노 포러스 박막을 이용한 표면 온도 센서의 제작 및 성능 연구 II (Fabrication and Performance Investigation of Surface Temperature Sensor Using Fluorescent Nanoporous Thin Film II)

  • 김현정;유재석;박진일
    • 설비공학논문집
    • /
    • 제25권12호
    • /
    • pp.674-678
    • /
    • 2013
  • We present a non-invasive technique to the measure temperature distribution in nano-sized porous thin films by means of the two-color laser-induced fluorescence (2-LIF) of rhodamine B. The fluorescence induced by the green line of a mercury lamp with the makeup of optical filters was measured on two separate color bands. They can be selected for their strong difference in the temperature sensitivity of the fluorescence quantum yield. This technique allows for absolute temperature measurements by determining the relative intensities on two adequate spectral bands of the same dye. To measure temperature fields, Silica (SiO2) nanoporous structure with 1-um thickness was constructed on a cover glass, and fluorescent dye was absorbed into these porous thin films. The calibration curves of the fluorescence intensity versus temperature were measured in a temperature range of $10-60^{\circ}C$, and visualization and measurement of the temperature field were performed by taking the intensity distributions from the specimen for the temperature field.

Impact of MJS treatment and artificial freezing on ground temperature variation: A case study

  • Jiling, Zhao;Ping, Yang;Lin, Li;Junqing, Feng;Zipeng, Zhou
    • Geomechanics and Engineering
    • /
    • 제32권3호
    • /
    • pp.293-305
    • /
    • 2023
  • To ensure the safety of underground infrastructures, ground can sometimes be first treated by cement slurry and then stabilized using artificial ground freezing (AGF) technique before excavation. The hydration heat produced by cement slurry increases the soil temperature before freezing and results in an extension of the active freezing time (AFT), especially when the Metro Jet System (MJS) treatment is adopted due to a high cement-soil ratio. In this paper, by taking advantage of an on-going project, a case study was performed to evaluate the influence of MJS and AGF on the ground temperature variation through on-site measurement and numerical simulation. Both on-site measurement and simulation results reveal that MJS resulted in a significant increase in the soil temperature after treatment. The ground temperature gradually decreases and then stabilized after completion of MJS. The initiation of AGF resulted in a quick decrease in ground temperature. The ground temperature then slowly decreased and stabilized at later freezing. A slight difference in ground temperature exists between the on-site measurements and simulation results due to limitations of numerical simulation. For the AGF system, numerical simulation is still strongly recommended because it is proven to be cost-effective for predicting the ground temperature variation with reasonable accuracy.