• Title/Summary/Keyword: Temperature Difference Measurement

Search Result 446, Processing Time 0.035 seconds

The Effect of Foot Cooling on Body Temperature (발바닥 부위 쿨링이 심부 체온에 미치는 효과)

  • Park, Yujin;Kim, Junghun;Park, Jieun;Kim, Jiin;Lee, Jongmin
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.232-236
    • /
    • 2017
  • In this study, We investigated the effect of foot cooling on the reduction of body temperature after hard exercise at the high temperature of $40^{\circ}C$. We performed a total of 30 subjects, and the subjects performed treadmill exercise for 30 minutes. We produced the cooling device to cool the foot using Peltier module. After the end of the exercise, We performed normal recovery method and cooling recovery method(one foot, both feet) for 1 hour on the same indoor environmental conditions and confirmed the change of body temperature of subjects. The results of deep body temperature measurement showed average $38.78{\pm}0.22^{\circ}C$ to $38.54{\pm}0.15^{\circ}C$ when the normal recovery method was performed. Cooling recovery method on one foot showed average $38.69{\pm}0.14^{\circ}C$ to average $38.06{\pm}0.17^{\circ}C$ and Cooling recovery method on both feet showed average $38.69{\pm}0.15^{\circ}C$ to average $37.84{\pm}0.21^{\circ}C$. There was a significant difference between the normal recovery method and the one foot cooling recovery method(p < .05), there was a significant difference between the normal recovery method and the both feet cooling recovery method(p < .05) and there was a significant difference between the one foot cooling recovery method and the both feet cooling recovery method(p < .05). Body temperature showed the lowest decrease rate when the normal recovery method was performed, and body temperature showed the highest decrease rate when the both feet cooling recovery method was performed. Therefore, recovery of cooling on the foot after hard exercise have decreased body temperature, delay fatigue in the body, and will be contributed to improvement of athlete performance.

The Study on Elongation and Torque Measurement in Large Bolt by using Ultrasonic Technology (초음파를 이용한 대형볼트 신장량 및 체결력 측정연구)

  • Ahn, Y.S.;Gil, D.S.;Park, S.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.40-46
    • /
    • 2009
  • This study on the bolt elongation and torque measuring method by ultrasonic nod-destructive method. In the past, The dial gage was used for the elongation measurement of gas turbine bolts. The purpose of this study is to improve the traditional bolt elongation measurement method. The old method using dial gage measures the elongation of the gas turbine bolt. If the length differences among the loading bolts are within the required range, The loading torques of bolts consider as acceptable. But this method can not give the information about torque differences among the loading bolts. It could bring out vibration of turbine due to loading torque differences among the bolts. So the elongation and torque must be measured simultaneously. The new technology using ultrasonic non-destructive method can give the information about bolt elongation and torque. The ultrasonic method basically measures the speed in the bolt material for the calculation the bolt elongation. But the ultrasonic speed varies according to temperature and loading torque of bolts. So the factors of temperature and loading power were investigated and reflected to the calculation of bolt elongation and torque. The results of this study shows the big difference among the bolts torque in the old method and the torque differences among the bolts can be adjusted by reflecting the result of this study. And this torque adjusting method can decrease gas turbine vibration problem due to torque difference among the bolts. So this paper shows ultrasonic method is better than old method for the measurement of bolt elongation and torque.

  • PDF

Changes of the Skin Temperature for Biceps Brachii on the Isotonic, Isometric Exercise and Gender, BMI Index

  • Lee, Jin;Chun, Hye-Lim;Kim, Dong-Hoon
    • Journal of Korean Physical Therapy Science
    • /
    • v.26 no.2
    • /
    • pp.1-12
    • /
    • 2019
  • Purpose: The purpose of this study is to find out changes in skin temperature, which is one of the regulatory systems of homeostasis, according to the isotonic-isometric exercise type, and changes in skin temperature according to gender and BMI index through isotonic-isometric exercise. Design: Randomized Controlled Trial. Methods: This study was conducted for 28 healthy male and female students from Department of Physical Therapy, G University. Subjects carried out isometric-isotonic exercise using dumbbells of 4kg and 8kg, respectively. And skin temperature was measured by using a computer infrared thermography. Results: The isometric exercise group was significantly difference changes in temperature by measurement time. Conclusion: In order to find out the effect of isometric exercise and isotonic exercise on skin temperature changes of biceps brachii, this study was carried out for 28 healthy male and female adults. The result of this study may helpful as basic data for orthopedic physical therapy.

The Dyeability of Natural dye Extracted from Chesnut Shell (밤껍질에서 추출되는 천연염료의 염색성 연구)

  • 정영옥
    • Korean Journal of Rural Living Science
    • /
    • v.8 no.2
    • /
    • pp.83-91
    • /
    • 1997
  • In this study, the dyeability of natural dye extracted from chesnut shell was investigated in order to explore the using of discarded chesnut shell in natural dyeing. Dyeing experiments were done in various dyeing conditions which were different in dyeing temperature, concentration of dyebath, dyeing time, repitition of dyeing. pH of dyebath and mordant with 3 kinds of experimental fabrics silk, nylon and cotton. Color and color difference ($\Delta$ E) of every dyed fabrics were measured and color fastness to drycleaning, washing, perspiration and light were measured. The results were as follows ; 1. The dyebath became thicker with time and temperature of extraction and the characteristics of dyebath prepared chesnut shell 1g : distilled water 30㏄ after 3 hrs-boiling were 32,400ppm and 3.7pH. 2. The dyeabilities of silk and nylon fabrics were good and color difference was increased with dyeing temperature, concentration of dyebath, dyeing time, number of repitition and acidity of dyebath. But the dyeability of cotton was very poor compared to silk and nylon. 3. Without the treatment of mordant, the dyeability of silk was little lower than that of nylon, but after the treatment of mordants it became higher than nylon. After the treatment of mordant Cu and Fe, the dyeability of cotton was increased although the natural dye from the chesnut shell was hardly absorved in cotton without mordant. 4. On the whole, the colorfastness of dyed silk and nylon were very good except the colorfastness to washing in silk and the colorfastness to light in nylon.

  • PDF

The Study on the Thermal Comfort of Rural Housing in Chung-nam area (충남지역 농촌 주거용 건물의 열쾌적성능에 관한 연구)

  • Park, Jae-Sang;Yoo, Jong-Ho;Park, Jae-Wan;Shin, U-Cheul
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.202-207
    • /
    • 2011
  • This study has measured indoor temperature and relative humidity and evaluated it for one year by selecting Chungnam's rural areas for improving indoor environment of rural housing in the circumstance that the environment of housing is poor due to deterioration of rural housing. As a result of its evaluation, the indoor temperature difference by household appeared to be more than $13^{\circ}C$, and it was measured that the indoor temperature was mostly low. A difference of more than 40% in case of relative humidity occurred, so the difference of the indoor environment by household was clear. In case of the thermal comfort zone, the number of households that are distributed to more than 50% of a thermal comfort criterion in the winter was only 3 households, rather than the summer.

  • PDF

Themal Fatigue Behavior of Alumina Ceramics (알루미나 세라믹스의 열피로 거동)

  • 정우찬;한봉석;이홍림;이형직
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1094-1100
    • /
    • 1998
  • The thermal fatigue behavior of alumina ceramics was investigated by water quenching method. Single-quench thermal shock tests were performed to decide the critical thermal shock temperature difference ($\Delta$Tc) which was found to be 225$^{\circ}C$ Cyclic thermal shock fatigue tests were performed at temperature diff-erences of 175$^{\circ}C$, 187$^{\circ}C$ and 200$^{\circ}C$ respectively. After cyclic thermal shock fatigue test the distributions of retained strength and crack were observed. Retained strength was measured by four point bending method and crack observation method bydye penetration. In terms of the retained strength distribution the critical number of thermal shock cycles(Nc) were 7 for $\Delta$T=200$^{\circ}C$, 35 for $\Delta$T=187$^{\circ}C$ and 180for $\Delta$T=175$^{\circ}C$ respec-tively. In terms of the crack observation the critical number of thermal shock cycles were 5 for $\Delta$T==200$^{\circ}C$ 20 for $\Delta$T==187$^{\circ}C$ and 150 for $\Delta$T=175$^{\circ}C$ respectively. The difference of Nc investigated by two different methods is due to the formation of the longitudinal cracks which had no effect on the four point bending strength. Therefore the thermal fatigue behavior of alumina ceramics could be more accurately described by the crack observation method than the retained strength measurement method.

  • PDF

Distribution Analysis of Land Surface Temperature about Seoul Using Landsat 8 Satellite Images and AWS Data (Landsat 8 위성영상과 AWS 데이터를 이용한 서울특별시의 지표면 온도 분포 분석)

  • Lee, Jong-Sin;Oh, Myoung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.434-439
    • /
    • 2019
  • Recently, interest in urban temperature change and ground surface temperature change has been increasing due to weather phenomenon due to global warming, heat island phenomenon caused by urbanization in urban areas. In Korea, weather data such as temperature and precipitation have been collected since 1904. In recent years, there are 96 ASOS stations and 494 AWS weather observation stations. However, in the case of terrestrial networks, terrestrial meteorological data except measurement points are predicted through interpolation because they provide point data for each installation point. In this study, to improve the resolution of ground surface temperature measurement, the surface temperature using satellite image was calculated and its applicability was analyzed. For this purpose, the satellite images of Landsat 8 OLI TIRS were obtained for Seoul Metropolitan City by seasons and transformed to surface temperature by applying NASA equation to the thermal bands. The ground measurement data was based on the temperature data measured by AWS. Since the AWS temperature data is station based point data, interpolation is performed by Kriging interpolation method for comparison with Landsat image. As a result of comparing the satellite image base surface temperature with the AWS temperature data, the temperature difference according to the season was calculated as fall, winter, summer, based on the RMSE value, Spring, in order of applicability of Landsat satellite image. The use of that attribute and AWS support starts at $2.11^{\circ}C$ and RMSE ${\pm}3.84^{\circ}C$, which reflects information from the extended NASA.

Inverse Boundary Temperature Estimation in a Two-Dimensional Cylindrical Enclosure Using Automatic Differentiation and Broyden Combined Method (자동미분법과 Broyden 혼합법을 이용한 2차원 원통형상에서의 경계온도 역추정)

  • Kim Ki-Wan;Kim Dong-Min;Baek Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.270-277
    • /
    • 2006
  • Inverse radiation problems were solved for estimating boundary temperature distribution in a way of function estimation approach in an axisymmetric absorbing, emitting and scattering medium, given the measured radiative data. In order to reduce the computational time fur the calculation of sensitivity matrix, automatic differentiation and Broyden combined method were adopted, and their computational precision and efficiency were compared with the result obtained by finite difference approximation.. In inverse analysis, the effects of the precision of sensitivity matrix, the number of measurement points and measurement error on the estimation accuracy had been inspected using quasi-Newton method as an inverse method. Inverse solutions were validated with the result acquired by additional inverse methods of conjugate-gradient method or Levenberg-Marquardt method.

Analysis of the Thermal Dome Effect from Global Solar Radiation Observed with a Modified Pyranometer

  • Zo, Ilsung;Jee, Joonbum;Kim, Buyo;Lee, Kyutae
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.263-270
    • /
    • 2017
  • Solar radiation data measured by pyranometers is of fundamental use in various fields. In the field of atmospheric optics, the measurement of solar energy must be precise, and the equipment needs to be maintained frequently. However, there seem to be many errors with the existing type of pyranometer, which is an element of the solar-energy observation apparatus. In particular, the error caused by the thermal dome effect occurs because of the thermal offset generated from a temperature difference between outer dome and inner casing. To resolve the thermal dome effect, intensive observation was conducted using the method and instrument designed by Ji and Tsay. The characteristics of the observed global solar radiation were analyzed by classifying the observation period into clear, cloudy, and rainy cases. For the clear-weather case, the temperature difference between the pyranometer's case and dome was highest, and the thermal dome effect was $0.88MJ\;m^{-2}\;day^{-1}$. Meanwhile, the thermal dome effect in the cloudy case was $0.69MJ\;m^{-2}\;day^{-1}$, because the reduced global solar radiation thus reduced the temperature difference between case and dome. In addition, the rainy case had the smallest temperature difference of $0.21MJ\;m^{-2}\;day^{-1}$. The quantification of this thermal dome effect with respect to the daily accumulated global solar radiation gives calculated errors in the cloudy, rainy, and clear cases of 6.53%, 6.38%, and 5.41% respectively.

Prediction of Cutting Temperature in Flank Face at High Speed Steel in Orthogonal Turning (2차원 선삭시 고속도강 공구의 플랭크면 절삭온도 예측)

  • Jun, Tae-Ok;Bae, Choon--Eak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.222-231
    • /
    • 1996
  • Temperature distribution on the flank face in orthogonal turning with cutting tool of high speed steel is studied by using a finite element method and experiments. Experiments are carried out to verify the validity of the temperature measurement by using a thermoelectric couple junciton imbedded in a cutting tool of high speed steel. Good agreement is obtained between the analytical results and the experimental ones for the temperature distributions on flank face of cutting tool with igh speed steel. The analytical results show that the temperature on the top flank face of a tool is higher because of the difference of the friction velocity on each face of the tool.