• Title/Summary/Keyword: Temperature Difference Energy

Search Result 1,097, Processing Time 0.026 seconds

An Experimental Study on Thermal Breakage in Curved Double Glazing (곡면 복층유리 열파손에 관한 실험적 연구)

  • Nam, Jung-Woo;Lee, Jae-Hyun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.543-548
    • /
    • 2012
  • The use of glass applied to curved surface as a building material has increased in recent years. However, the curved glass is difficult to guarantee the quality in process of making it into double glazing, So it is vulnerable to thermal breakage. In this paper, when the glass broken during experiments, surface temperature difference on curved double glazing was compared to that of heat strengthened glass and flat glass. As a result, flat single glass was broken at temperature difference of 100~140 degrees but curved double glazing was broken at that of 40~60 degrees. Therefore, curved double glazing is more vulnerable than flat double glazing to thermal breakage, so it should be considered when applied to building facade.

  • PDF

On Energy Saving and Quality Improvement of Food Process (1). Applications of Hotwire Monitoring System for Food Biotechnology (식품공정의 에너지 절감과 품질향상에 관한 연구(1). 세선 가열법의 식품 생물공학에의 응용)

  • 허종화;크라우
    • KSBB Journal
    • /
    • v.5 no.4
    • /
    • pp.403-410
    • /
    • 1990
  • Application of the Rheocatch Hotwire Monitoring System for food biotechnology process was evaluated. The growth of microogranism, E coli (JM 83 and Sigma) and Corynesccfertun glutamicum, were monitored. in the fermentor. The cell growth could not be detected the temperature differences between the hotwire and samples($\Delta$T) as indicated by the monitoring system during the fermentation processes. The cell concentration of less than 2g/dl was not sufficient to generate the measurable temperature difference in the fermentor. In order to calibrate the Rheocatch Monitoring System, the temperature difference as a function of solute concentration (microbial cells, sodium cholide, sucrose and dextran) was studied. The relationship between $\Delta$T and the concentration of microbial cells, sucrose and dextran can be expressed in a power series. Further studied with dextran indicated that viscosity and/or kinematic viscosity increase exponentially with an increase in $\Delta$T This is regardless of the concentration and molecular weight of dextran. $\Delta$T linearly increases with the logarithm of molecular weight, while the logarithm of viscosity and the logarithm of kinematic viscosity increase with the logarithm of molecular weight.

  • PDF

A Study on the System Performance Prediction Method of Natural Circulation Solar Hot Water System (자연순환식 태양열 급탕 시스템의 성능 추정 방법에 관한 연구)

  • Youn, Suck-Berm;Chun, Moon-Hyun
    • Solar Energy
    • /
    • v.7 no.2
    • /
    • pp.37-53
    • /
    • 1987
  • This study has been prepared for the purpose of developing the system performance prediction method of natural circulation solar hot water system. The storage tank of the natural circulation solar hot water system equipped with flat-plate solar collector is located at higher elevation than the solar collectors. Therefor, the storage tank temperature distribution formed accordance with configuration of storage tank by flow rate of circulating fluid affect system collection efficiency. In this study measure the storage tank temperature distribution with various experimental system under real sun condition and present the theoretical prediction method of the storage tank temperature. Moreover measure the flow rate not only day-time but also night-time reverse flow rate with die injection visual flow meter. Main conclusion obtain from the present study is as follows; 1) The storage tank temperature distribution above the connecting pipe connection position is the same as that of the fully mixed tank and below the connection position is the same as that of stratified tank. 2) The system performance sensitive to the storage tank temperature distribution. Therefore detailed tank model is necessary. Average storage tank temperature can be calculate 3% and storage tank temperature profile can get less than 10% difference with this model system.

  • PDF

Performance Evaluation of Hybrid Solar Air-Water Heater when the Heated Air is used as Inlet Air during Air and Water is Heated Simultaneously (가열 공기 유입에 따른 복합형 태양열 가열기 공기-물 제조 성능에 관한 연구)

  • Choi, Hwi-Ung;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.5
    • /
    • pp.21-29
    • /
    • 2015
  • In this study, the performance of hybrid solar air-water heater when the heated air was used as inlet air was investigated during air and liquid were heated simultaneously. Temperature difference between inlet air and ambient was set as $0^{\circ}C$, $13^{\circ}C$ and $22^{\circ}C$ and it was maintained during the daily operation. As a result, thermal efficiency of liquid heating was increased when the inlet air temperature was increased and heat gain of the water in heat storage tank was also increased with increment of temperature difference between inlet air and ambient temperature. On the contrary to this, the decrement of air heating efficiency and total efficiency of collector was confirmed with increment of inlet air temperature and it is considered that heat gain of liquid side is lower than heat loss of air side that occurring by using heated air as inlet air of collector. So, from these results, maximum temperature that the liquid in heat storage tank can reach was expected to increase if the return air or any heated air was used as inlet air. But air and total efficiency of hybrid solar air-water is decreased, so using outdoor air as inlet air is considered as better way on perspective of using of solar thermal energy by hybrid solar collector. However, it is hard to conclude that using outdoor air is better than heated air on the perspective of energy saving of building because the performance of heat storage performance was increased even air and total thermal efficiency was decreased, so the necessity of more profound consideration about these result in further research was confirmed for putting the hybrid solar air-water heater to practical use.

Irreversibility Analysis of an Air-to-Water Heat Pump System (공기-물 열펌프 시스템의 비가역손실 해석)

  • Lee, Se-Kyoun;Woo, Joung-Son;Ro, Jeong-Geun
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.71-78
    • /
    • 2006
  • Thermodynamic irreversibility analysis of an air-to-water heat pump system is analyzed in this study. This analysis shows the distribution of irreversibilities(true losses in thermodynamic sense) through the system components and informs us of a potential improvements with the irreversibility factor decreases. The results show that the largest irreversibilities occur in the motor-compressor unit. The remaining irreversibilities are distributed relatively uniformly through the other parts including utilization system. The increase of performance can be attained through either the improvement of adiabatic efficiency of motor-compressor unit(${\eta}_{mc}$) or the reduction of temperature difference(${\Delta}T$). With the decrease of utilization temperature($T_u$) COPH also increases but the exergetic efficiency decreases. The increase of COPH of about 0.05 can be accomplished with 1K decrease of ${\Delta}T$ or $T_u$.

Numerical Analysis for Unsteady Thermal Stratified Turbulent Flow in a Horizontal Circular Cylinder

  • Ahn, Jang-Sun;Ko, Yong-Sang;Park, Byeong-Ho;Youm, Hag-Ki;Park, Man-Heung
    • Nuclear Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.405-414
    • /
    • 1996
  • In this paper, the unsteady 2-dimensional turbulent flow model for thermal stratification in a pressurizer surge line of PWR plant is proposed to numerically investigate the heat transfer and flow characteristics. The turbulence model is adapted to the low Reynolds number K-$\varepsilon$ model (Davidson model). The dimensionless governing equations are solved by using the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm. The results are compared with simulated experimental results of TEMR Test. The time-dependent temperature profiles in the fluid and pipe nil are shown with the thermal stratification occurring in the horizontal section of the pipe. The corresponding thermal stresses are also presented. The numerical result for thermal stratification by the outsurge during heatup operation of PWR shows that the maximum dimensionless temperature difference is about 0.83 between hot and cold sections of pipe well and the maximum thermal stress is calculated about 322MPa at the dimensionless time 28.5 under given conditions.

  • PDF

A Study for Energy Separation of Vortex Tube using Air Supply System (I) - the effect of diameter of cold end orifice - (공기공급 시스템에 적용되는 Vortex Tube의 에너지 분리특성에 관한 연구(I) -저온출구 orifice의 직경변화에 의한 영향-)

  • 이병화;추홍록;상희선
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.9-18
    • /
    • 1998
  • The vortex tube is a simple device for separating a compressed gaseous fluid stream into two flows of high and low temperature without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air supply system. The phenomena of energy separation through the vortex tube was investigated experimentally. This study is focused on the effect of the diameter of cold end orifice diameter on the energy separation. The experiment was carried out with various cold end orifice diameter ratio from 0.22 to 0.78 for different input pressure and cold air flow ratio. The experimental results were indicated that there are an optimum diameter of cold end orifice for the best cooling performance. The maximum cold air temperature difference was appeared when the diameter ratio of the cold end orifice was 0.5. The maximum cooling capacity was obtained when the diameter ratio of the cold end orifice was 0.6 and cold air flow ratio was 0.7.

  • PDF

An Experimental Study on the Thermal Behavior of Aquifer Thermal Energy Storage System (대수층 축열시스템의 열거동에 관한 실험적 연구)

  • 이세균;문병수;남승백;김기덕
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1780-1787
    • /
    • 1992
  • Experiments have been performed on the thermal behavior in a liquid saturated porous medium in a system to simulate a single well aquifer thermal energy storage system. The principal interests in this study are the combined effects of forced and natural convection. Significant buoyancy flow due to natural convection is developed quickly as the temperature difference between the injection and original aquifer temperature increases. Theoretical model under simplified assumptions (called simple buoyancy flow model in this study) has been developed. The results of this model agree well with the experiments. The effects of buoyancy flow on the recovery factor are also examined in this study.

Analysis of high efficiency natural gas liquefaction cycle with mixed refrigerant (고효율 혼합 냉매 천연 가스 액화 공정에 대한 고찰)

  • Baek, Seung-Whan;Hwang, Gyu-Wan;Jeong, Sang-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.181-185
    • /
    • 2008
  • The new concept for liquefaction of natural gas has been designed and simulated in this paper. Conventional liquefaction cycles are usually composed with Joule-Thomson valves at lower temperature refrigerant cycle. The new concept of natural gas liquefaction is discussed. The main difference with conventional liquefaction process is the presence of the turbine at low temperature of MR (mixed refrigerant) cycle. The turbine acts as expander but also as an energy generator. This generated energy is provided to the compressor which consumes energy to pressurize refrigerants. The composition of the mixed refrigerant is investigated in this study. Components of the refrigerant are methane, propane and nitrogen. Composition for new process is traced with Aspen HYSYS software. LNG heat exchangers are analyzed for the new process. Heating and cooling curves in heat exchangers were also analyzed.

  • PDF

Effects of the partial admission rate and cold flow inlet-outlet ratio on energy separation of Vortex Tube (Vortex Tube의 부분유입율과 저온 입.출구비가 에너지분리 특성에 미치는 영향)

  • 김정수;추홍록;상희선
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.51-59
    • /
    • 1998
  • The vortex tube is a simple device for separating a compressed fluid stream into two flows of high and low temperature without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air conditioner for special purpose. The phenomena of energy separation through the vortex tube were investigated to see the effects of cold flow inlet-outlet ratios and partial admission rates on the energy separation experimentally. The experiment was carried out with various cold flow inlet-outlet ratios from 0.28 to 10.56 and partial admission rates from 0.176 to 0.956 by varying input pressure and cold air flow ratio. To find best use in a given cold flow inlet-outlet ratio and partial admission rate, the maximum temperature difference of cold air was presented. The experimental results were indicated that there are an optimum range of cold flow inlet-outlet ratio for each partial admission rate and available partial admission rate.

  • PDF