• 제목/요약/키워드: Temperature Difference Energy

검색결과 1,097건 처리시간 0.036초

Effect of under-bump-metallization structure on electromigration of Sn-Ag solder joints

  • Chen, Hsiao-Yun;Ku, Min-Feng;Chen, Chih
    • Advances in materials Research
    • /
    • 제1권1호
    • /
    • pp.83-92
    • /
    • 2012
  • The effect of under-bump-metallization (UBM) on electromigration was investigated at temperatures ranging from $135^{\circ}C$ to $165^{\circ}C$. The UBM structures were examined: 5-${\mu}m$-Cu/3-${\mu}m$-Ni and $5{\mu}m$ Cu. Experimental results show that the solder joint with the Cu/Ni UBM has a longer electromigration lifetime than the solder joint with the Cu UBM. Three important parameters were analyzed to explain the difference in failure time, including maximum current density, hot-spot temperature, and electromigration activation energy. The simulation and experimental results illustrate that the addition 3-${\mu}m$-Ni layer is able to reduce the maximum current density and hot-spot temperature in solder, resulting in a longer electromigration lifetime. In addition, the Ni layer changes the electromigration failure mode. With the $5{\mu}m$ Cu UBM, dissolution of Cu layer and formation of $Cu_6Sn_5$ intermetallic compounds are responsible for the electromigration failure in the joint. Yet, the failure mode changes to void formation in the interface of $Ni_3Sn_4$ and the solder for the joint with the Cu/Ni UBM. The measured activation energy is 0.85 eV and 1.06 eV for the joint with the Cu/Ni and the Cu UBM, respectively.

마이크로 열전냉각기의 열성능에 대한 열전소자 두께의 영향 (Effect of the Thermoelectric Element Thickness on the Thermal Performance of the Thermoelectric Micro-Cooler)

  • 이공훈;김욱중
    • 설비공학논문집
    • /
    • 제18권3호
    • /
    • pp.211-217
    • /
    • 2006
  • The three-dimensional numerical analysis has been carried out to figure out the effect of the thermoelectric element thickness on the thermal performance of the thermo-electric micro-cooler. The small-size and column-type thermoelectric cooler is considered. It is known that tellurium compounds currently have the highest cooling performance around the room temperature. Thus, in the present study, $Bi_{2}Te_{3}$ and $Sb_{2}Te_{3}$ are selected as the n- and p-type thermoelectric materials, respectively. The thermoelectric leg considered is less than $20{\mu}m$ thick. The thickness of the leg may affect the thermal and electrical transport through the interfaces between the leg and metal conductors. The effect of the thermoelectric element thickness on the thermal performance of the cooler has been investigated with parameters such as the temperature difference, the current, and the cooling power.

제연해석 프로그램의 질량 및 엔탈피 보존식의 연계알고리즘 개선연구 (Modification of Coupling Algorithm between Mass and Enthalpy Conservation for Modified CAU_ESCAP)

  • 배승용;고권현;홍기배;유홍선
    • 한국안전학회지
    • /
    • 제26권4호
    • /
    • pp.102-110
    • /
    • 2011
  • For decreasing of the casualties and designing of the smoke control systems in the ultra high-rise building, the programs for analysis of smoke control were developed for prediction of smoke spread and distributions of pressure and temperature in building fire situation. In this study, coupling algorithm between mass and enthalpy conservations was modified for improving the applicability of the CAU_ESCAP which program can consider the energy transfer. The fire situation in ultra high-rise building was applied by using the modified CAU_ESCAP. Results of pressure difference predicted by modified CAU_ESCAP are higher than results of ASCOS as stack effect is generated due to the increasing of stairway temperature. Moreover, theoretically, the result of the neutral plane is more accurate than the result of ASCOS, in fire situation of ultra high-rise building.

동해 죽변 연안해역에서 조석주기의 내부수온변동 (Internal Tidal Oscillations of Temperature off Jukbyun on the East Coast of Korea)

  • 이홍재;신창웅
    • 한국해양학회지
    • /
    • 제27권3호
    • /
    • pp.228-236
    • /
    • 1992
  • 동해 죽변 연안역에서 수직성충이 비교적 잘 형성된 1980년 6월 15일부터 8월 8일 까지 thermistor chain을 이용하여 관측한 수온의 조석주기 변동을 분석하였다. 각 관 측수심에서 수온의 스펙트럼은 반일주기 성분이 전층에서 우세하게 나타났으며 반일주 기 주파수대에 포함된 스펙트럼 밀도는 수심에 따라 증가하여 저층에서 최대로 나타났 다. 반일주기 주파수의 각 층별 상관성은 높고 위상차는 작은 것으로 나타났다. 이것 은 연구해역에서 성층이 잘 이루어졌을 때 반일주기 내부조직이 존재한다는 것을 의미 한다. 진폭은 10 m 정도이며 내부조직이 사라지기 직전에 최대로 나타났다.

  • PDF

탄소나노히팅파이프를 이용한 온실 난방에너지 절감효과 (Energy Saving Effects of Carbon Nano Heating Pipe for Heating of Greenhouse)

  • 백이;전종길;윤남규
    • 한국기계기술학회지
    • /
    • 제13권3호
    • /
    • pp.107-111
    • /
    • 2011
  • This carbon nano heating system was consisted of power supply equipment, a carbon fiber and a stainless flexible hose. carbon nano heating system was manufactured by carbon fiber of a power capacity 30kw/h and light-oil hot air heater in control plot was the heating capacity 30,000kcal/h, As the result, Temperature difference due to carbon nano heating system and hot air heater in greenhouse showed that air temperature at experimental greenhouse, comparison greenhouse were $14.8^{\circ}C$, $13.4^{\circ}C$ respectively. It was found that carbon nano heating system and light-oil hot air heater heating cost were 1,095,740won, 2,683,628won. therefore as heating cost saving 60%. Yield of tomatoes cultured in greenhouse using carbon nano heating pipe was 4% inclease. Economic analysis comparison between the carbon nano heating pipe and the hot air heater in greenhouse were 41% respectively.

Analysis of BNNT(Boron Nitride Nano Tube) synthesis by using Ar/N2/H2 60KW RF ICP plasma in the difference of working pressure and H2 flow rate

  • Cho, I Hyun;Yoo, Hee Il;Kim, Ho Seok;Moon, Se Youn;Cho, Hyun Jin;Kim, Myung Jong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.179-179
    • /
    • 2016
  • A radio-frequency (RF) Inductively Coupled Plasma (ICP) torch system was used for boron-nitride nano-tube (BNNT) synthesis. Because of electrodeless plasma generation, no electrode pollution and effective heating transfer during nano-material synthesis can be realized. For stable plasma generation, argon and nitrogen gases were injected with 60 kW grid power in the difference pressure from 200 Torr to 630 Torr. Varying hydrogen gas flow rate from 0 to 20 slpm, the electrical and optical plasma properties were investigated. Through the spectroscopic analysis of atomic argon line, hydrogen line and nitrogen molecular band, we investigated the plasma electron excitation temperature, gas temperature and electron density. Based on the plasma characterization, we performed the synthesis of BNNT by inserting 0.5~1 um hexagonal-boron nitride (h-BN) powder into the plasma. We analysis the structure characterization of BNNT by SEM (Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy), also grasp the ingredient of BNNT by EELS (Electron Energy Loss Spectroscopy) and Raman spectroscopy. We treated bundles of BNNT with the atmospheric pressure plasma, so that we grow the surface morphology in the water attachment of BNNT. We reduce the advancing contact angle to purity bundles of BNNT.

  • PDF

텔레매틱스 기술을 이용한 자동차 주행 패턴 및 냉간 배출거리 평가에 관한 연구 (A Study on the Estimation of Vehicle Driving Pattern and Cold Emission Length by using on-board Telematics Devices)

  • 최상진;김필수;박성규;박건진;김진윤;홍영실;장영기;김정;김정수
    • 한국대기환경학회지
    • /
    • 제29권6호
    • /
    • pp.734-744
    • /
    • 2013
  • In this study, the telematics device was installed on the car (OBD-II) to collect the information on the operation conditions from each sample vehicle. Based on the information the domestic driving pattern was analysed and the ratio of cold start length was estimated. As a result of analysis for driving pattern, we found a difference in the frequency of driving on the hourly or seasonal basis. Then, the driving pattern of the rush hours, weekdays, and weekends could be derived. Also, from the study, an average of 2.22 times per day occurred in a single trip and average driving distance for the trip was 15.72 km. In addition, the proportion of cold start length was analyzed to be 16.11%. The seasonal cold start length has big difference from season to season (Winter 26.63%, Summer 8.22%, Intermediate 12.65%). There was an inverse relationship between the outside temperature and ratio of cold start length. In order to improve the accuracy of the cold emission estimation, it is necessary to apply domestic ratio of cold start length that driving pattern and temperature in Korea is reflected.

단열재의 두께 및 연돌높이에 따른 태양열 굴뚝의 자연환기 성능에 관한 실험적 연구 (The Experimental Study on the Natural Ventilation Performance of Solar Chimney by the variation of Insulation Thickness and Height)

  • 조성우;김동완;임영빈
    • 한국태양에너지학회 논문집
    • /
    • 제22권3호
    • /
    • pp.39-46
    • /
    • 2002
  • The results of experiment on the performance of natural ventilation by insulation thickness and height system of solar chimney are described. The 3-inside wall was made of concrete and 1-wall was made of glass. The two kinds of model experiment were performed. One was the varition of the 60cm, 90cm and 120cm of solar chimney, the other was the variation of the insulation thickness 10mm and 50mm and without insulation of outside wall of solar cimney. As the temperature difference between bottom and top expressed $1.7\sim2.9^{\circ}C$, air velocity measured $0.5\sim0.8m/s$ and ventilation rate was $194.4m^3/h$ in the case of the 120cm height of solar chimney, the respect of natural ventilation performance was superior to others cases in the first model experiment. Though the case of 120cm height of solar chimney was attached 50mm insulation the ventilation rate was not so much as the case of solar chimney was attached 10mm insulation. the temperature difference between bottom and top was the largest in the other cases. From this research, the natural ventilation performance of solar chimney was affected by not only height and insulation thickness of solar chimney but also wind velocity and directon.

초소형 바이너리 발전 플랜트를 위한 Neuro PID 제어 (Neuro PID Control for Ultra-Compact Binary Power Generation Plant)

  • 한건영
    • 한국정보통신학회논문지
    • /
    • 제25권11호
    • /
    • pp.1495-1504
    • /
    • 2021
  • 초소형 바이너리 발전 플랜트는 열원과 냉각원 사이의 저온도차 열에너지를 이용하여 열에너지를 전력으로 변환한다. 실제 발전환경에서 플랜트의 특성치는 환경 조건이나 관련 장비의 부식과 같은 부정적인 영향으로 인해 변동하고, 플랜트 특성치의 변동은 PID 파라미터가 고정된 종래의 PID 제어시스템에서 불안정한 터빈 출력으로 이어진다. 본 논문에서는 플랜트의 특성치 변동에 따라 PID 파라미터를 적응적으로 조정하는 신경망 기반의 Neuro PID 제어시스템을 제안한다. 초소형 바이너리 발전 플랜트의 동작점 근방에서 동특성을 나타내는 이산시간 전달함수 모델을 도출하고, 제안된 제어시스템의 설계 전략을 기술한다. 제안된 Neuro PID 제어시스템을 종래의 PID 제어시스템과 비교하고, 시뮬레이션 결과를 통해 그 유효성을 보인다.

삼상슬러리 기포탑에서 액상의 표면장력이 열전달 계수에 미치는 영향 (Effects of Liquid Surface Tension on the Heat Transfer Coefficient in a Three-Phase Slurry Bubble Column)

  • 임호;임대호;진해룡;강용;정헌
    • Korean Chemical Engineering Research
    • /
    • 제50권3호
    • /
    • pp.499-504
    • /
    • 2012
  • 산업현장에서 자주 접하는 액상의 물성인 표면장력이 상대적으로 작은 액상으로 구성된 삼상슬러리 기포탑에서 총괄 열전달 특성을 고찰하였다. 기포탑 내부의 열전달 현상은 기포탑 내부의 수직 열원과 기포탑 간의 열전달계를 구성하여 고찰하였으며 열전달 계수는 정상상태에서 열원표면의 온도와 기포탑 내부의 평균 온도의 차를 측정하여 결정하였다. 기체유속($U_G$), 슬러리 상에 포함된 고체입자의 분율($C_S$) 그리고 연속 액상의 표면장력(${\sigma}_L$)이 기포탑 내부의 총괄 열전달 계수(h)에 미치는 영향을 규명하였다. 기포탑 내부 열원 표면과 기포탑 벌크영역 간의 온도차는 시간의 변화에 따른 온도차 요동을 측정하여 그 평균값으로 결정하였다. 기포탑 내부 열원표면과 기포탑 벌크 영역 간의 온도차 요동은 연속 액상의 표면장력이 감소할수록 진폭이 감소하였으며 온도차의 평균값도 감소하였다. 내부 수직 열원과 기포탑 간의 총괄 열전달 계수는 기체의 유속과 슬러리 상에 포함된 고체입자의 분율이 증가함에 따라 증가하였으며 연속 액상의 표면장력이 증가함에 따라 감소하였다. 표면장력이 물보다 작은 연속 액상의 기포탑에서 측정된 총괄 열전달 계수는 본 연구의 범위 내에서 실험변수와 무차원군의 상관식으로 나타낼 수 있었다.