• Title/Summary/Keyword: Temperature Difference Energy

Search Result 1,097, Processing Time 0.033 seconds

Heat Flow and Cooling Performance of an Electronic Refrigerating Kimchi Jar (전자냉동 김치독의 열유동 및 성능 특성)

  • Song, Kyu-Soek;Kim, Kyung-Hwan;Lee, Seung-Chul;Ko, Chul-Kyun;Lee, Jae-Heon;Oh, Myung-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.928-936
    • /
    • 1999
  • The electronic refrigerating kimchi jar operates with a low noise because it contains no compressor but it consumes more energy than that of an refrigerator with compressor. In this paper, the heat flow characteristics and cooling performance of an electronic refrigerating kimchi jar are studied by means of experiments. When the storage temperature is kept in a range of $-5.7^{\circ}C$ to $4.1^{\circ}C$. in the case of three ambient temperatures; $12.7^{\circ}C$, $22.3^{\circ}C$ and $32.2^{\circ}C$, the cooling performance of $20{\ell}$ kimchi jar is investigated. The experiments show that the temperature difference that exists between kimchi jar and its ambient provides a measure of the coefficient of performance of kimchi jar. It is also found that ratio of net pumping heat to the heat pumping rate of thermoelectric module is independent of the temperature difference.

Effect of Air-earth Heat Exchange System on Growth of Leafy Lettuce in Greenhouse (온실내 잉여에너지 이용을 위한 지중 열교환 시스템의 상추 재배 효과)

  • Paek, Yee;Jeon, Jong-gil;Yun, Nam-kyu;Kang, Geum-Choon;Lee, Si-Young
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.71-76
    • /
    • 2011
  • Earth to air heat exchangers made by iron, aluminium, copper and poly-ethylene pipe for single greenhouse heating were experimented and blowers. Earth to air heat exchanger was installed by pipelines in earth tube at 70cm depths and air blower was the heating capacity 3kW/h, As the result, Temperature difference due to temperature history of the inlet and outlet air on the various type in earth tube in greenhouse showed that air temperature at the various type in earth tube, comparison tube were make no difference respectively. Under the experimental condition, heat fluxes and heating load were showed 6,800Kcal/h, 19,699kcal/h generally yield of Lactuca Sativa cultured during days of sowing 90day in greenhouse using copper pipe was 170% incleased.

Assessment of thermal fatigue induced by dryout front oscillation in printed circuit steam generator

  • Kwon, Jin Su;Kim, Doh Hyeon;Shin, Sung Gil;Lee, Jeong Ik;Kim, Sang Ji
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1085-1097
    • /
    • 2022
  • A printed circuit steam generator (PCSG) is being considered as the component for pressurized water reactor (PWR) type small modular reactor (SMR) that can further reduce the physical size of the system. Since a steam generator in many PWR-type SMR generates superheated steam, it is expected that dryout front oscillation can potentially cause thermal fatigue failure due to cyclic thermal stresses induced by the transition in boiling regimes between convective evaporation and film boiling. To investigate the fatigue issue of a PCSG, a reference PCSG is designed in this study first using an in-house PCSG design tool. For the stress analysis, a finite element method analysis model is developed to obtain the temperature and stress fields of the designed PCSG. Fatigue estimation is performed based on ASME Boiler and pressure vessel code to identify the major parameters influencing the fatigue life time originating from the dryout front oscillation. As a result of this study, the limit on the temperature difference between the hot side and cold side fluids is obtained. Moreover, it is found that the heat transfer coefficient of convective evaporation and film boiling regimes play an essential role in the fatigue life cycle as well as the temperature difference.

Heating Performance of Hot Water Supplying System in Greenhouse (온수배관을 이용한 온실의 난방성능)

  • Yoon, Yong-Cheol;Shin, Yik-Soo;Kim, Hyeon-Tae;Bae, Seoung-Beom;Choi, Jin-Sik;Suh, Won-Myung
    • Journal of Bio-Environment Control
    • /
    • v.21 no.2
    • /
    • pp.79-87
    • /
    • 2012
  • This research was conducted to obtain basic data with regard to the heating performance that would be produced by installing an aluminum hot water pipe inside the greenhouse with the goal of reducing the heating energy in greenhouse. The research results are summarized as follows. The degree of difference in relation to the temperature by height within the greenhouse during the entire experiment was significant - within the range of 4.0~$7.0^{\circ}C$. The temperature difference between incoming and outgoing water was about $3.3^{\circ}C$ greater when FCU was activated compared to when it was not activated. Meanwhile, the amount of energy consumed increased about 36.2~40.1%. The amount of pyrexia per hour also increased by 44.6~52.0%. During the experiment period, circulated flux was within the range of 0.48~$0.49L{\cdot}s^{-1}$ while average fluid speed was 1.53~$1.56m{\cdot}s^{-1}$. The average temperature difference between incoming and outgoing water was 6.24~$11.50^{\circ}C$. The amount of heating value by each set temperature within the minimum outdoor temperature range of -14.0~$-0.6^{\circ}C$ was 135,930~307,150 kcal, and the range was within the 9,610~$19,630kcal{\cdot}h^{-1}$ per hour. This demonstrated that about 23~53% heating energy of the maximum heating load could be supplied. Total radiating value and amount of energy consumed were 2,548,306 kcal and 3,075.7 kWh, respectively. When heating takes place using oil, which is a fossil fuel, the total amount of light oil consumed was 281.6 L while the cost was 321,000 won. When the electricity cost for farms is applied, the total cost was about 110,730 won, which is about 33.5% of the cost required compared to oil consumption. The temperature at in the experiment area was about 8.3~$14.6^{\circ}C$ higher compared to that of the control area.

Enhanced Catalytic Activity of Cu/Zn Catalyst by Ce Addition for Low Temperature Water Gas Shift Reaction (Ce 첨가에 따른 저온수성가스전이반응용 Cu/Zn 촉매의 활성 연구)

  • Byun, Chang Ki;Im, Hyo Bin;Park, Jihye;Baek, Jeonghun;Jeong, Jeongmin;Yoon, Wang Ria;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.200-206
    • /
    • 2015
  • In order to investigate the effect of cerium oxide addition, Cu-ZnO-CeO2 catalysts were prepared using co-precipitation method for water gas shift (WGS) reaction. A series of Cu-ZnO-CeO2 catalyst with fixed Cu Content (50 wt%, calculated as CuO) and a given ceria content (e.g., 0, 5, 10, 20, 30, 40 wt%, calculated as CeO2) were tested for catalytic activity at a GHSV of 95,541 h-1, and a temperature range of 200 to 400 ℃. Cu-ZnO-CeO2 catalysts were characterized by using BET, SEM, XRD, H2-TPR, and XPS analysis. Varying composition of Cu-ZnO-CeO2 catlysts led the difference characteristics such as Cu dispersion, and binding energy. The optimum 10 wt% doping of cerium facilitated catalyst reduction at lower temperature and improved the catalyst performance greatly in terms of CO conversion. Cerium oxide added catalyst showed enhanced activities at higher temperature when it compared with the catalyst without cerium oxide. Consequently, ceria addition of optimal composition leads to enhanced catalytic activity which is attributed to enhanced Cu dispersion, lower binding energy, and hindered Cu metal agglomeration.

Thermal Characteristics of Domestic Solar Collector for Low-Temperature Applications (국내 저온용 집열기의 열성능 특성)

  • Kim, Jeong-Bae;Rhie, Soon-Myeong;Yoon, Eung-Sang;Lee, Jin-Kook;Joo, Moon-Chang;Lee, Dong-Won;Kwak, Hee-Youl;Baek, Nam-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.155-160
    • /
    • 2007
  • This study shows the results on thermal performance test with domestic solar collector for low-temperature applications using KS, then reveals the efficiency difference between KS and EN standard. Using the test results, this study Presents the status of thermal performance with domestic solar collector including flat-plate, single evacuated, and double evacuated (with mirror or U-tube) solar collector.

Computer Simulation of a Super-Heat Pump System (고효율 수퍼히트펌프에 관한 전산 해석)

  • Kim, H.J.;Jung, D.S.;Kim, C.B.;Ha, K.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.234-248
    • /
    • 1995
  • A super-heat pump system composed of a suction line heat exchanger, low and high stage economizers, and a screw compressor is simulated to examine the energy performance and design options. CFC12, HCFC22, HFC134a, HCFC22/HCFC142b, HFC32/HFC134a, and HFC125/HFC134a are used as working fluids for comparison. The results indicate that the proposed system charged with appropriate mixtures is up to 33.4% more energy efficient than the normal system with CFC12. The performance of the super-heat pump system charged with mixtures was influenced by such factors as the temperature matching, heat source temperature difference, low stage economizer, and high stage economizer. The fluids with a larger liquid specific heat such as HFC134a would have more benefits when a suction line heat exchanger is installed. 40%HCFC22/60%HCFC142b mixture seems to be a good candidate to replace CFC12. On the other hand, 25%HFC32/75% HFC134a would be a good long term candidate to replace HCFC22.

  • PDF

Numerical study on the characteristics of TKE in coastal area for offshore wind power (해상풍력발전을 위한 연안지역의 난류에너지 특성 수치연구)

  • Yoo, Jung-Woo;Lee, Soon-Hwan;Lee, Hwa-Woon
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1551-1562
    • /
    • 2014
  • To clarify the characteristics of TKE (Turbulence Kinetic Energy) variation for offshore wind power development, several numerical experiments using WRF were carried out in three different coastal area of the Korean Peninsula. Buoyancy, mechanical and shear production term of the TKE budget are fundamental elements in the production or dissipation of turbulence. Turbulent kinetic energy of the south coast region was higher than in other sea areas due to the higher sea surface temperature and strong wind speed. In south coast region, strong wind passing through the Korea Strait is caused by channelling effect of the terrain of the Geoje Island. Although wind speed is weak in east coast, because of large difference in wind speed between the upper and lower layer, the development of mechanical turbulence tend to be predominant. Since lower sea surface temperature and smaller wind shear were detected in west coastal region, the possibility of turbulence production not so great in comparison with other regions. The understanding of the characteristics of turbulence in three different coastal region can be reduced the uncertainty of offshore wind construction.

Numerical Analysis on development of the Cooling System for E-Scooter Battery Pack (전동스쿠터용 배터리팩 냉각시스템 개발을 위한 수치해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.30-36
    • /
    • 2016
  • The battery pack which is a main component of E-scooter needs the cooling system because it is the matter of battery safety in spite of the incresing of charge efficiency due to decress the internal resistence in the condition of high temperature. The purpose of this study is to analyse the effects of cooling methods which is the control of air's inlet and outlet operating timing. When each battery had large temperature deviation in the battery pack, the difference of battery's performance and efficiency were appeared. In this study, the cooling performance of battery pack has been improved by changing the operation timing of inlet and outlet fan, it improved the performance and efficiency of battery. The numerical analysis using a commercial code ANSYS CFX version 17.0 were used for the study.

A Study for Separation of $CH_4$ and $CO_2$ from Biogas (바이오가스의 $CH_4$, $CO_2$의 분리방법 연구)

  • Lee, Taek-Hong;Kim, Jae-Young;Chang, Sae-Hun;Lee, Hyo-Suk;Choi, Ik-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.1
    • /
    • pp.72-79
    • /
    • 2010
  • This paper is studying the selective separation of methane and carbon dioxide which are the main ingredients of biogas. Adsorption performance of molecular sieve 13x for carbon dioxide seems to be reasonable. In this experiments carbon dioxide contains about 3~5 ppm of methane and it is impossible to obtain high purity carbon dioxide. Applying the low temperature technique, it is possible to separate methane and carbon dioxide from bio gas. PRO II simulation shows results a small change of liquefaction temperatures and no difference with the used thermodynamic models. Applying low temperature technique, It is possible to separate carbon dioxide and methane from biogas.