• Title/Summary/Keyword: Temperature Difference Energy

Search Result 1,097, Processing Time 0.032 seconds

Influence on the Thermal Environment by Change of Indoor-air Volume of Plastic Greenhouse with Hot Air Heating Systems (온풍난방을 채용한 3연동 플라스틱 하우스의 실내공기용적 변화가 하우스 온열환경에 미치는 영향)

  • Jeon, Sam-Chae;Li, Chang-Su;Na, Su-Yeun;Huh, Jong-Chul;Choi, Dong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.3
    • /
    • pp.1-10
    • /
    • 2002
  • Relatively being economical in installation and easy in operation, hot-air heating system has been generally used in greenhouse for heating system regardless of high cost in maintenance and uneven distribution of air temperature. Therefore to overcome the disadvantages in maintenance and in distribution of air temperature and to improve efficiency of heating system, this experimental study is performed. This experimental study aims to improve the character of uneven temperature distribution in vertical direction and to reduce energy consumption for heating in a greenhouse. The experiment had been performed to investigate change of thermal environment and effects on reducing energy consumption for heating in greenhouse by additional surface insulation and reduction of indoor-air volume that come by installing transparent vinyl membranes with different height in each house. The results show that there is a wide difference in oil-energy consumption between houses according to condition of surface insulation and change of indoor-air volume. Furthermore, the results show that the efficiency of dual surface is higher than that of change of indoor-air volume in terms of energy saving.

Tc and Jc distribution in in situ processed MgB2 bulk superconductors with/without C doping

  • Kim, C.J.;Kim, Y.J.;Lim, C.Y.;Jun, B.H.;Park, S.D.;Choo, K.N.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.36-41
    • /
    • 2014
  • Temperature dependence of magnetic moment (m-T) and the magnetization (M-H) at 5 K and 20 K of the in situ processed $MgB_2$ bulk pellets with/without carbon (C) doping were examined. The superconducting critical temperature ($T_c$), the superconducting transition width (${\delta}T$) and the critical current density ($J_c$) were estimated for ten test samples taken from the $MgB_2$ bulk pellets. The reliable m-T characteristics associated with the uniform $MgB_2$ formation were obtained for both $MgB_2$ pellets. The $T_cs$ and ${\delta}Ts$ of all test samples of the undoped $MgB_2$ were the same each other as 37.5 K and 1.5 K, respectively. The $T_cs$ and ${\delta}Ts$ of the C-doped $MgB_2$ were 36.5 K and 2.5 K, respectively. Unlike the m-T characteristics, there existed the difference among the M-H curves of the test samples, which might be caused by the microstructure variation. In spite of the slight $T_c$ decrease, the C doping was effective in enhancing the $J_c$ at 5 K.

Analysis on Activation Energy Measurement and Application of Nuclear Equipment Non-metallic Materials (원전기기 비금속재료의 활성화에너지 측정 및 적용성 분석)

  • Bhang, Keug-Jin;Hong, Jun-Hee
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.38-43
    • /
    • 2016
  • Safety-related equipments of Nuclear Power Plants(NPP) have to perform environmental qualification test in accordance with IEEE-323 standards. However, non-metallic materials replace new one regularly instead of the test because they are considered as consumable parts. In this study, the seven kinds of non-metallic materials are selected and their activation energy was experimentally evaluated with uncertainty analysis by using thermogravimetric analyzer(TGA). In order to obtain activation energy of non-metallic materials, mass difference, temperature raising rate and conversion rate on the specimen are analyzed. It is postulated that the three experiment conditions are important to get a reliable activation energy. This postulate was experimentally confirmed using Arrhenius equation and Flynn-Wall-Ozawa analysis.

The effect of wast heat-electric energy conversion using a thermoelectric module (열전소자를 이용한 폐열의 전기에너지 변환 효과)

  • Baek, In-Su;Bang, Min-Seo;Kim, Dae-Hyun;Jeong, Yeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.246-246
    • /
    • 2010
  • In this study, the effect of wast heat-electric energy conversion according to temperature difference between two sides of a thermoelectric module was investigated as a way of electric energy conversion from waste heat generated in machinery system like automobile system.

  • PDF

A Comparison of Constant Current and Constant Voltage Control in LED Driver (LED driver에서의 정전류 및 정전압 제어의 비교 연구)

  • Han, Soo-Bin;Park, Suck-In;Jung, Hak-Kun;Song, Eu-Gine;Jung, Bong-Man
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.83-84
    • /
    • 2010
  • This paper reviews the performance difference between constant voltage control and constant current control in LED driver. Simulations of both control methods are performed for performance comparison especially with temperature variation. The results show that constant current control method is inherently better than constant voltage control for LED drive.

  • PDF

Mechanical Milling of Lithium with Metal Oxide and its Reactivity with Gases

  • Yokoi, Tomomichi;Yamasue, Eiji;Okumura, Hideyuki;Ishihara, Keiichi N.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.959-960
    • /
    • 2006
  • Li reacts with $N_2$ at room temperature. In order to activate Li, the mechanical milling of Li with stable metal oxide, namely, $Al_2O_3$ and MgO, using a high energy vibrating ball mill was performed. In the case of Li-MgO system, it reacts with $N_2$, but hardly reacts with $O_2$. The reaction with $N_2$ generally produces $Li_3N$, while for some vigorous reactions the $Mg_3N_2$ is produced as the major phases. In the case of $Li-Al_2O_3$ system, reactivities with both $N_2$ and $O_2$ are high. The difference is explained in terms of the reaction mechanism and the Li state.

  • PDF

A Study on the Temperature Characteristics at the Inlet and the Outlet Pipes of a Refrigerator Drain Condenser (냉장고 배출수 응축기 입출구 배관에서의 온도 특성에 관한 연구)

  • Ha, Ji Soo;Kim, Tae Kwon
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.247-255
    • /
    • 2014
  • The present study was conducted to elucidate the characteristics of temperature at the inlet and outlet pipes of a refrigerator drain condenser and suggest the method to predict the temperature of the refrigerant at the inlet and outlet pipes of the drain condenser. For this purpose, a built in style refrigerator was installed in a constant temperature chamber to measure temperatures at the inlet and outlet pipes of the drain condenser. From the results of the present analysis, it could be seen that the measured temperatures changed from $37^{\circ}C$ to $46^{\circ}C$ and the actual refrigerant temperatures were higher than the measured temperatures with the difference magnitude of $8^{\circ}C$ to $22^{\circ}C$. The present study suggested that the temperatures of the refrigerator could be calculated with the measured temperatures by introducing curve fitting of the measured temperature. The predicted refrigerant temperatures by the present study had the accuracy within 6% error of the actual refrigerant temperatures.

The Effects of Regular Jjimjilbang Exposure on Cold Tolerance in Young and Elderly Females (정기적인 찜질방노출이 청년과 노년 여성의 내한성에 미치는 영향)

  • Choi, Jeong-Wha;Song, Eun-Young;Hwang, Soo-Kyung
    • The Korean Journal of Community Living Science
    • /
    • v.18 no.4
    • /
    • pp.599-607
    • /
    • 2007
  • We analyzed the effects of regular Jjimjilbang (Korean sauna) exposure on the cold tolerance in young and elderly females. Subjects were young (n=7) and elderly (n=7) females who had never had Jjimjilbang exposure experience. The Jjimjil training group was exposured in the Jjimjilbang 19 times per week. Jjimjibang exposure was limited to three times per day. Jjimjil activity was taken freely. To prove the effects of the cold tolerance, subjects were exposed to cold air ($12{\pm}1^{\circ}C,\;60{\pm}10%$RH). In these conditions, subjects were exposed for 30 minutes at which time rectal temperature, skin temperatures, clothing microclimate, energy expenditure, blood pressure and subjective sensation were measured. To prove the effects of the local cold tolerance, vascular hunting reaction was observed measuring the finger skin temperature while the left middle finger tip was immersed in cold water of $0^{\circ}C$ for 30 minutes. The results are as follows. According to repeated Jjimjil exposure, rectal temperature changes, peripheral temperature and energy expenditure were increased gradually in the cold climate chamber. Blood pressure, subjective sensation and vascular hunting reactions did not show any significant difference. In conclusion, regular Jjimjilbang exposure has negative effects on the ability of the body to improve its regulation of temperature especially in cold tolerance.

  • PDF

NATURAL CONVECTION AROUND A HEAT CONDUCTING AND GENERATING SOLID BODY INSIDE A SQUARE ENCLOSURE WITH DIFFERENT THERMAL BOUNDARIES

  • NITHYADEVI, NAGARAJAN;UMADEVI, PERIYASAMY
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.4
    • /
    • pp.459-479
    • /
    • 2015
  • Two-dimensional steady laminar natural convection around a heat conducting and generating solid body inside a square enclosure with different thermal boundaries is performed. The mathematical model is governed by the coupled equation of mass, momentum and energy. These equations are discretized by finite volume method with power-law scheme and solved numerically by SIMPLE algorithm with under-relaxation technique. Effect of Rayleigh number, temperature difference ratio of solid-fluid, aspect ratio of solid-enclosure and the thermal conductivity ratio of solid-fluid are investigated numerically for Pr = 0.7. The flow and heat transfer aspects are demonstrated in the form of streamlines and isotherms respectively.

A Study on the Operation Strategy of Radiant Floor Cooling in Apartment Buildings (공동주택에서 바닥복사냉방의 적정 운영방안에 관한 연구)

  • 조영흠;석호태;여명석;김광우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.574-583
    • /
    • 2004
  • In this study, the operation strategy of the radiant floor cooling is evaluated in terms of indoor environmental conditions and energy consumption through simulations using the TRNSYS comparing the existing cooling operation. The operation strategy during continuously operated for cooling is proposed that a representative room had additional equipments and other rooms were operated with only a radiant floor cooling system and that system and control method for cooling are varied with period while intermittently operated for cooling. Specifically, when there are no people in the room, rooms were operated by only radiant floor cooling system using cooling storage and when people are occupied, rooms were operated by dehumidification and supplementary cooling device with radiant floor cooling system. The results of this study show that proposed operation strategy can stably maintain the set room air temperature and can reduce the energy consumption compared to the existing cooling method during continuously operated for cooling. While intermittently operated for cooling, the difference of set room air temperature by proposed operation strategy does not happen, satisfying comfort standards and the radiant floor cooling can expect to supply stable electric power because of decreasing demand for peak electric power of energy consumption.