• 제목/요약/키워드: Temperature Control of Fuel

검색결과 479건 처리시간 0.026초

감압비등을 이용한 혼합연료의 분무제어에 관한 연구 (Study on the Spray Control of Mixed Fuel Using Flash Boiling)

  • 명광재;윤준규
    • 대한기계학회논문집B
    • /
    • 제34권11호
    • /
    • pp.1005-1013
    • /
    • 2010
  • 본 연구는 HCCI 엔진의 운전조건을 고려한 혼합연료의 감압비등 분무제어방법을 평가하기 위하여 수행하였다. 2상영역이 존재하는 혼합연료는 고비점성분의 증발촉진과 함께 연료분무의 급격한 증발을 유도할 수 있는 감압비등분무를 이용함으로써 저온 및 저밀도장에서 혼합기형성과정의 제어가 가능하다. HCCI 엔진은 이러한 분위기조건에서 연료를 조기분사하기 때문에 착화성이 높은 경유와 휘발성이 높은 가솔린성분으로 함유한 혼합연료의 감압비등현상을 이용함으로써 액체연료의 분열, 미립화와 같은 물리적 제어 및 착화연소에 의한 화학적 제어를 실현할 수 있다. 본 연구는 혼합연료의 성분과 몰분율을 주요변수로 설정하여 정적용기 내에 분사된 연료분무의 감압비등현상을 슐리렌 화상 및 Mie 산란광을 촬영한 후, 화상처리과정을 통하여 이루어졌다. 그 결과로 감압비등현상은 비교적 저온 및 저밀도장에서 분무구조가 크게 변화함을 알 수 있었으며, 조기 연료분사시기에서 감압비등분무를 이용한 혼합기형성을 제어함으로써 HCCI 연소에 적용이 가능할 것으로 분석하였다.

Intelligent Control of Power Plant Using Immune Algorithm Based Multiobjective Fuzzy Optimization

  • Kim, Dong-Hwa
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.525-530
    • /
    • 2003
  • This paper focuses on design of nonlinear power plant controller using immune based multiobjective fuzzy approach. The thermal power plant is typically regulated by the fuel flow rate, the spray flow rate, and the gas recirculation flow rate. However, Strictly maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature. the change of the dynamic characteristics in the steam-turbine system. Up to the present time, PID Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. These parameters tuned by multiobjective based on immune network algorithms could be used for the tuning of nonlinear power plant.

  • PDF

촉매연소기에서 2단 공급공기와 연료가 NOx 저감에 미치는 연구 (NOx Reduction with Secondary Air and Fuel in a Catalytic Combustor)

  • 정진도;이보영
    • 한국대기환경학회지
    • /
    • 제19권5호
    • /
    • pp.541-549
    • /
    • 2003
  • A basic experimental study was conducted in order to find the optimum combustion control technology to decrease the thermal NO$_{x}$, by applying the catalytic combustion method with natural gas. NO$_{x}$ emission increased with increasing space velocity due to temperature rising in the furnace. In order to overcome the low resistance to high temperature, secondary air was supplied to the CST combustor. The following secondary fuel formed combustible mixture in part, which resulted in steep increase of the exiting temperature of the 2nd catalyst bed. It led to the more generator of NO$_{x}$, 30∼60% of the 1 st catalyst bed. It might be due to the potential increase of thermal NO$_{x}$.

프로판 연료의 공급조건에 따른 정적연소실내 연소 특성에 관한 연구 (The Combustion Characteristics with Supply Conditions of Propane Fuel at the Constant Volume Combustion Chamber)

  • 박경석
    • 대한기계학회논문집B
    • /
    • 제28권10호
    • /
    • pp.1172-1177
    • /
    • 2004
  • The emission control of automobile has been intensified as a part of the countermeasure to decrease air pollution in the world. As the cars with an alternative fuel starts to get into the spotlight, the cars with low emission has been introduced and exhaust gas regulation forced in this country. These days, LPG vehicles, which infrastructure of fuel was already built up, and CNG vehicles are recognized for alternative fuel cars in this country. In this study, the constant volume combustion chamber was manufactured and used for experiments to obtain the combustion characteristics of propane mixture. The combustion characteristics was analyzed, with the change of supply conditions of propane fuel. Inside the combustion chamber, the maximum temperature increase with the initial pressure is going up. The burning velocity also seems to have the same characteristic as the temperature. However, the heat flux do not change much according to the theoretical correct mixture but it changes with the various initial temperature of the combustion chamber.

중형전술차량의 항속거리 향상 방안 연구 (A Study on the Improvement of Distance Range for Medium Tactical Vehicle)

  • 이형채
    • 에너지공학
    • /
    • 제28권1호
    • /
    • pp.30-36
    • /
    • 2019
  • 군에서는 다양한 전술차량들을 개발하여 운용하고 있다. 그 중 중형전술차량은 기존 군용트럭을 대체하면서 병력수송에 적합한 차량으로 개발되어 보병부대의 전투력에 중요한 영향을 끼친다. 이런 중요한 무기체계인 중형전술차량에 연료 효율을 높이는 기술을 적용한다면 항속거리가 증가되어 효과적인 작전수행과 유류비를 감소시킬 수 있다. 본 연구에서는 연료 효율을 높이기 위해 오일 온도 제어 전략을 적용하여 중형전술차량의 항속거리를 향상시키기 위한 방안에 대해 연구하였다.

저온 디젤 연소에서 세탄가가 배기가스 특성에 미치는 영향 (The Effect of Cetane Number on Exhaust Emissions in Low-temperature Diesel Combustion)

  • 한만배
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.17-22
    • /
    • 2011
  • This study is to investigate the effect of the cetane number in ultra low sulfur diesel fuel on combustion characteristics and exhaust emissions at 1500 rpm and 2.6bar BMEP in low-temperature diesel combustion with 1.9L common rail direct injection diesel engine. Low-temperature diesel combustion was achieved by adopting external high EGR rate with the strategic injection control without modification of engine components. Test fuels are ultra low sulfur diesel fuel (sulfur less than 12 ppm) with two cetane numbers (CN), i.e., CN30 and CN55. For the CN30 fuel, as a start of injection (SOI) timing is retarded, the duration of an ignition delay was decreased while still longer than $20^{\circ}CA$ for all the SOI timings. In the meanwhile, the CN55 fuel showed that an ignition delay was monotonically extended as an SOI timing is retarded but much shorter than that of the CN30 fuel. The duration of combustion for both fuels was increased as an SOI timing is retarded. For the SOI timing for the minimum BSFC, the CN30 produced nearly zero PM much less than the CN55, while keeping the level of NOx and the fuel consumption similar to the CN55 fuel. However, the CN30 produced more THC and CO than the CN55 fuel, which may come from the longer ignition delay of CN30 to make fuel and air over-mixed.

Core design study of the Wielenga Innovation Static Salt Reactor (WISSR)

  • T. Wielenga;W.S. Yang;I. Khaleb
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.922-932
    • /
    • 2024
  • This paper presents the design features and preliminary design analysis results of the Wielenga Innovation Static Salt Reactor (WISSR). The WISSR incorporates features that make it both flexible and inherently safe. It is based on innovative technology that controls a nuclear reactor by moving molten salt fuel into or out of the core. The reactor is a low-pressure, fast spectrum transuranic (TRU) burner reactor. Inherent shutdown is achieved by a large negative reactivity feedback of the liquid fuel and by the expansion of fuel out of the core. The core is made of concentric, thin annular fuel chambers containing molten fuel salt. A molten salt coolant passes between the concentric fuel chambers to cool the core. The core has both fixed and variable volume fuel chambers. Pressure, applied by helium gas to fuel reservoirs below the core, pushes fuel out of a reservoir and up into a set of variable volume chambers. A control system monitors the density and temperature of the fuel throughout the core. Using NaCl-(TRU,U)Cl3 fuel and NaCl-KCl-MgCl2 coolant, a road-transportable compact WISSR core design was developed at a power level of 1250 MWt. Preliminary neutronics and thermal-hydraulics analyses demonstrate the technical feasibility of WISSR.

가스터빈 연소기내 2차연료분사에 의한 연소 불안정성의 제어 (Control of Combustion Instabilities in a Gas Turbine Combustors Through Secondary Fuel Injection)

  • 전충환
    • 한국연소학회지
    • /
    • 제3권1호
    • /
    • pp.59-69
    • /
    • 1998
  • The results of study on the active control of naturally occurring combustion oscillations with a single dominant frequency in an atmospheric dump combustor are presented. Control was achieved by an oscillatory infection of secondary fuel at the dump plane. A high speed solenoid valve with a maximum frequency of 250Hz was used as the actuator and a sound level meter, located at the combustor exit, measured the pressure fluctuations which served as the feedback signal for the control loop. Instability characteristics were mapped over a range of mean mixing section velocities from 6.7 m/s-9.3 m/s and with three mixing conditions. Different fuel/air mixing conditions were investigated by introducing varying percentages of primary fuel at two locations, one at the entrance to the mixing section and one 6 mixing tube diameters upstream of the dump plane. Control studies were conducted at a mean velocity of 9.3 m/s, with an air temperature of $415^{\circ}C$, and from flame blowout to the stoichiometric condition.

  • PDF

1kW급 연료전지 평가시스템 개발에 관한 연구 (A study on development of 1kW SOFC test system)

  • 황현석;이상훈;이주영
    • 한국위성정보통신학회논문지
    • /
    • 제11권3호
    • /
    • pp.24-27
    • /
    • 2016
  • 본 연구에서는 연료전지 중 발전효율이 50% 이상으로 가장 높고 가정용(1~10kW급) 시스템으로 필요성이 높아지고 있는 고체산화물 연료전지(SOFC, Solid Oxide Fuel Cell)에 대한 평가시스템을 설계하여 최적의 평가성능을 구현코자 하였다. 최적의 연료전지 평가시스템을 구현하기 위하여 전처리 및 반응조건 제어를 위한 온도제어모듈, 반응물에 대한 유량제어모듈, 전자부하기 등을 구현하였다. 온도제어모듈은 K형 서머커플을 사용하여 운전온도인 $750^{\circ}C$에서 $1^{\circ}C$이내의 정밀도 구현이 가능토록 설계하였고, 가스의 양이 일정하게 유지하기 위한 가습기 구조를 설계하였으며, 송풍기 및 히터의 정밀제어가 가능하도록 위상제어보드를 설계하여 적용함으로서 목표성능을 구현하였으며, 전자부하기는 방전방식으로 정전압, 정전류, 정저항 모드와 아날로그 입력과 출력모듈에 별도의 DC-DC 컨버터를 사용하여 오류를 최소화하였다. 구현한 평가시스템의 성능을 측정한 결과 스택전압은 80V에서 0.15%, 스택전류는 100A에서 0.1%의 정밀제어가 가능함을 확인하였다.

EGR 제어를 통한 디젤 및 바이오디젤의 저온연소 특성 비교 (Comparisons of Low Temperature Combustion Characteristics between Diesel and Biodiesel According to EGR control)

  • 이용규;장재훈;이선엽;오승묵
    • 한국분무공학회지
    • /
    • 제16권3호
    • /
    • pp.119-125
    • /
    • 2011
  • Due to the oxygen contents in biodiesel, application of the fuel to compression ignition engines has significant advantages in terms of lowering PM formation in the combustion chamber. In recent days, considerable studies have been performed to extend the low temperature combustion regime in diesel engines by applying biodiesel fuel. In this work, low temperature combustion characteristics of biodiesel blends in dilution controlled regime were investigated at a fixed engine operating condition in a single cylinder diesel engine, and the comparisons of engine performances and emission characteristics between biodiesel and conventional diesel fuel were carried out. Results show that low temperature combustion can be achieved at $O_2$ concentration of around 7~8% for both biodiesel and diesel fuels. Especially, by use of biodiesel, noticeable reduction (maximum 50% of smoke was observed at low and middle loads compared to conventional diesel fuel. In addition, THC(total hydrocarbon) and CO(Carbon monoxide) emissions decreased by substantial amounts for biodiesel fuel. Results also indicate that even though about 10% loss of engine power as well as 14% increase of fuel consumption rate was observed due to lower LHV(lower heating value) of biodiesel, thermal efficiencies for biodiesel fuel were slightly elevated because of power recovery phenomenon.