• Title/Summary/Keyword: Temperature Control of Fuel

Search Result 475, Processing Time 0.043 seconds

Effects of Engine Control Variables on Exhaust Gas Temperature and Stability during Cranking Operation of an SI Engine (가솔린기관의 시동시 기관 제어변수가 배기가스온도 및 시동성에 미치는 영향에 관한 실험적 연구)

  • Cho, Yong-Seok;An, Jae-Won;Park, Young-Joon;Kim, Duk-Sang;Lee, Seang-Wock
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.64-70
    • /
    • 2007
  • Raising exhaust gas temperature during cold-start period is very crucial to improve emission performance of SI engines because it enhances the performance of catalyst in the early stage of engine start. In this study, control variables such as ignition timing, idle speed actuator(ISA) opening and fuel injection duration were extensively investigated to analyze variations in exhaust gas temperature and engine stability during cranking period. Experimental results showed that spark timing affected engine stability and exhaust gas temperature but the effects were small. On the other hand, shortened injection duration and increased ISA opening led to a significant increase in exhaust gas temperature. Under such conditions, increase in cranking time was also observed, showing that it becomes harder to start the engine. Based on these observations, a pseudo fuel-air ratio, defined as a ratio of fuel injection time to degree of ISA opening, was introduced to analyze the experimental results. In general, decrease in pseudo fuel-air ratio raised exhaust gas temperature with the cost of stable and fast cranking. On the contrary, an optimal range of the pseudo fuel-air ratio was found to be between 0.3 to 0.5 where higher exhaust gas temperatures can be obtained without sacrificing the engine stability.

A Study on the Combustion Characteristics and the Control on the Fuel Flow Rate of LPG Intake Port Injection Engine (흡기포트 분사식 LPG 엔진의 연료량 제어 및 연소 특성에 관한 연구)

  • 김우석;이종화;정창현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.31-39
    • /
    • 2000
  • In this paper, characteristics of a port injection type LPG fuel system were investigated to adopt the system to a spark ignition engine through rig test. Engine combustion characteristics for limited conditions and the precise control method of LPG fuel supply were also studied. As a basic experiment, the effects and the relationships of parameters such as orifice area, fuel delivery pressure, fuel temperature and flow coefficient were established. From this, one dimensional compressible flow equation can be applied to control gaseous fuel flow rate by setting pressure difference between vaporizer and manifold to a certain range, for example about 1.2 bar in a naturally aspirated engine. The combustion analysis results of LPG engine were also compared with those of gasoline engine according to spark timing and load change. At part load and stoichiometric condition, the MBT spark timing of LPG fueled engine is retarded by 2$^{\circ}$ - 4$^{\circ}$CA compared to that of gasoline engine. On the contrary, the spark timing of LPG fueled engine can be advanced by 5$^{\circ}$- 10$^{\circ}$ CA at WOT, which results from higher Octane Number and burned fraction of LPG fuel compared to gasoline.

  • PDF

A Study on the Furnace Heating Characteristics Using Oxy-fuel Combustion (순산소 연소를 이용한 연소로 가열특성에 관한 실험적 연구)

  • Jeong, Yu-Seok;Lee, Eun-Kyung;Ko, Chang-Bok;Noh, Dong-Soon;Jang, Byung-Lok;Han, Hyung-Kee
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.229-234
    • /
    • 2006
  • The oxy-fuel combustion heating characteristics is investigated experimentally by measuring furnace and steel temperature variations for batch type furnace simulator with a specially designed low NOx oxy-fuel burner. Economics of using oxy-fuel combustion is confirmed and, the furnace and steel temperature variations for different heating conditions are compared to deduce optimal heating control pattern for energy savings and rapid uniform heating. High $CO_2$ concentration (> 80-90%), low NOx (< 40ppm) and CO (< 10ppm) are measured in the flue gas. Temperature differences (< $30^{circ}C$) inside the furnace and steel are reduced relatively by increasing the burner jet momentum.

  • PDF

Development of a Bridge Transported Servo Manipulator System for the Remote Operation and Maintenance of Advanced Spent Fuel Conditioning Process (사용후 핵연료 차세대관리공정 원격 운전/유지보수용 천정이동 서보 매니퓰레이터 시스템 개발)

  • Park, Byung-Suk;Lee, Jong-Kwang;Lee, Hyo-Jik;Choi, Chang-Hwan;Yoon, Kwang-Ho;Yoon, Ji-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.940-948
    • /
    • 2007
  • The Advanced Spent Fuel Conditioning Process(ACP), which is the process of the reduction of uranium oxide by lithium metal in a high temperature molten salt bath for spent fuel, was developed at Korea Atomic Energy Research Institute (KAERI). Since the ACP equipment is located in an intense radiation field (hot cell) as well as in a high temperature, it must be remotely operated and maintained. The ACP hot cell is very narrow so the workspace of the wall-mounted mechanical Master-Slave Manipulators(MSMs) is restricted. A Bridge Transported Servo Manipulator(BTSM) system has been developed to overcome the limitation of an access that is a drawback of the mechanical MSMs. The BTSM system consists ot a bridge crane with telescoping tubeset, a slave manipulator, a master manipulator, and a control system. We applied a bilateral position-position control scheme with friction compensation as force-reflecting controller. In this paper, the transmission characteristics on the tendon-and-pulley train is numerically formulated and analyzed. Also, we evaluate the performance of the force-reflecting servo manipulator.

An optimal control in cement kiln heat-up (시멘트 소성로 가열 단계에서의 최적 제어)

  • 김송호;이광순;이원규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.468-470
    • /
    • 1986
  • An optimal control in heat-up operation was formulated for minimizing the quadratic performance criterion which is a function of temperature, temperature gradient in the wall and fuel flow rate. For optimal control law computations mathematical model was simplified with assumptions and then linearized by use of orthogonal collocation in radial direction. Effects of weighting function assigned to temperature and temperature gradient and final time were compared with industrial data.

  • PDF

Weed Control by Flame (화염을 이용한 잡초방제 연구)

  • 姜和錫;文學洙
    • Journal of Biosystems Engineering
    • /
    • v.26 no.4
    • /
    • pp.331-336
    • /
    • 2001
  • This study was to develop a kerosene flame weeder. An air compressor was driven though the PTO of a tractor to provide necessary air for fuel combustion and proper pressure to supply fuel from fuel tank to the nozzle. It was found that the flame was extinguished very easily by wind and vibration of the tractor. This trouble could be solved by attaching a burner cap, which is a modified venturi tube, at the end of the nozzle. The constructed flame weeder was tested for the weeding capability in the prepared field. Weed extinction rate and weight decrease rate were analysed. Measured maximum flame temperature was 1,121$\^{C}$ when the fuel consumption was 13.41 kg/h and fuel supply pressure was 88.2 kPa. The maximum temperature occurred at 20cm from the front end the burner, and it decreased to 46$\^{C}$ as the distance increased to 110cm. The flame length of up to 70cm, where the flame temperature was higher than 372$\^{C}$, would be used for weeding purpose. Weed extinction rate and weight decreasing rate increased as the fuel consumption increased. The flame weeder was evaluated to be a practical weeder through improvement as the weed extinction rate and weight decrease rate were analysed to be 75% and 85%, respectively when the fuel consumption was 116.87kg/ha.

  • PDF

Model Based Hardware In the Loop Simulation of Thermal Management System for Performance Analysis of Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지 특성 해석을 위한 열관리 계통 모델 기반 HILS 기초 연구)

  • Yun, Jin-Won;Han, Jae-Young;Kim, Kyung-Taek;Yu, Sang-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.323-329
    • /
    • 2012
  • A thermal management system of a proton exchange membrane fuel cell is taken charge of controlling the temperature of fuel cell stack by rejection of electrochemically reacted heat. Two major components of thermal management system are heat exchanger and pump which determines required amount of heat. Since the performance and durability of PEMFC system is sensitive to the operating temperature and temperature distribution inside the stack, it is necessary to control the thermal management system properly under guidance of operating strategy. The control study of the thermal management system is able to be boosted up with hardware in the loop simulation which directly connects the plant simulation with real hardware components. In this study, the plant simulation of fuel cell stack has been developed and the simulation model is connected with virtual data acquisition system. And HIL simulator has been developed to control the coolant supply system for the study of PEMFC thermal management system. The virtual data acquisition system and the HIL simulator are developed under LabVIEWTM Platform and the Simulation interface toolkit integrates the fuel cell plant simulator with the virtual DAQ display and HIL simulator.

Simulation Experiment of PEMFC Using Insulation Vessel at Low Temperature Region (저온영역에서 단열용기를 이용한 연료전지 모의 실험)

  • Jo, In-Su;Kwon, Oh-Jung;Kim, Yu;Hyun, Deok-Su;Park, Chang-Kwon;Oh, Byeong-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.403-409
    • /
    • 2008
  • Polymer electrolyte membrane fuel cell (PEMFC) is very interesting power source due to high power density, simple construction and operation at low temperature. But it has problems such as high cost, improvement of performance, effect of temperature and initial start at low temperature. These problems can be approached to be solved by using experiment and mathematical method which are general principles for analysis and optimization of control system for heat and hydrogen detecting management. In this paper, insulation vessel and control system for stable operation of fuel cell at low temperature were developed for experiment. The constant temperature capability and the heating time at sub-zero temperatures with insulation control system were studied by using a heating bar of 60W class. PEMFC stack which was made by 4 cells with $50\;mc^2$ active area in each cell is a thermal source. Times which take to reach constant temperature by the state of insulation vacuum were measured at variable environment temperatures. The test was performed at two conditions: heating mode and cooling mode. Constant temperature capability was better at lower environment temperature and vacuum pressure. The results of this experiment could be used as basis data about stable operation of fuel cell stack in low temperature zone.

Core analysis of accident tolerant fuel cladding for SMART reactor under normal operation and rod ejection accident using DRAGON and PARCS

  • Pourrostam, A.;Talebi, S.;Safarzadeh, O.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.741-751
    • /
    • 2021
  • There has been a deep interest in trying to find better-performing fuel clad motivated by the desire to decrease the likelihood of the reactor barrier failure like what happened in Fukushima in recent years. In this study, the effect of move towards accident tolerant fuel (ATF) cladding as the most attracting concept for improving reactor safety is investigated for SMART modular reactor. These reactors have less production cost, short construction time, better safety and higher power density. The SiC and FeCrAl materials are considered as the most potential candidate for ATF cladding, and the results are compared with Zircaloy cladding material from reactor physics point of view. In this paper, the calculations are performed by generating PMAX library by DRAGON lattice physics code to be used for further reactor core analysis by PARCS code. The differential and integral worth of control and safety rods, reactivity coefficient, power and temperature distributions, and boric acid concentration during the cycle are analyzed and compared from the conventional fuel cladding. The rod ejection accident (REA) is also performed to study how the power changed in response to presence of the ATF cladding in the reactor core. The key quantitative finding can be summarized as: 20 ℃ (3%) decrease in average fuel temperature, 33 pcm (3%) increase in integral rod worth and cycle length, 1.26 pcm/℃ (50%) and 1.05 pcm/℃ (16%) increase in reactivity coefficient of fuel and moderator, respectively.

The Effect of T90 Temperature on Exhaust Emissions in Low-temperature Diesel Combustion (저온 디젤 연소에서 T90 온도가 배기가스에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.72-77
    • /
    • 2011
  • This study is to investigate the effect of the distillation temperature in ultra low sulfur diesel fuel on exhaust emissions in the low-temperature diesel combustion with 1.9L common rail direct injection diesel engine. Low temperature diesel combustion was achieved by adopting an external high EGR rate with a strategic injection control. The engine was operated at 1500 rpm 2.6 bar BMEP. The 90% distillation recovery temperature (T90) was $270^{\circ}C$ and $340^{\circ}C$ for the respective cetane number (CN) 30 and 55. It was found that there exists no distinctive discrepancy on exhaust emissions with regards to the different T90s. The high CN (CN55) fuels follow the similar trend of exhaust emissions as observed in CN30 fuels' except that high T90 fuel (CN55-T340) produced higher PM compared to low T90 fuel (CN55-T270). This may come from that high T90 plays an active role in aggravating the degree of fuel-air mixture preparedness before ignition.