• Title/Summary/Keyword: Temperature Control of Fuel

Search Result 479, Processing Time 0.03 seconds

Study on the Performance Factors of Two Stage Turbo-Charging System and Maximization of the Miller Cycle (2단 과급시스템의 성능 인자 영향과 밀러 효과 극대화에 관한 연구)

  • Beak, Hyun-min;Seo, Jung-hoon;Lee, Won-ju;Lee, Ji-woong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.953-960
    • /
    • 2019
  • The Miller cycle is a diesel engine that has been developed in recent years that it can reduce NOx and improve fuel consumption by reducing the compression ratio through intake valve closing (IVC) time control. The Miller cycle can be divided into the early Miller method of closing the intake valve before the bottom dead center (BDC) and the late Miller method of closing the intake valve after the BDC. At low speeds, the late Miller method is advantageous as it can increase the volumetric efficiency; while at medium and high speeds, the early Miller method is advantageous because of the high internal temperature reduction effect due to the expansion of the intake air during the piston lowering from IVC to BDC. Therefore, in consideration of the ef ects of the early and late Miller methods, it is necessary to adopt the most suitable Miller method for the operating conditions. In this study, a two-stage turbo charge system was applied to four-stroke engines and the process of enhancing the Miller effect through a reduction of the intake and exhaust valve overlap as well as the valve change adjustment mechanism were considered. As a result, the ef ects of fuel consumption and Tmax reduction were confirmed by adopting the Miller cycle with a two-stage supercharge, a reduction of valve overlap, and an increase of suction valve lift.

A Study on the Change of Condensable Particulate Matter by the SO2 Concentration among Combustion Gases (연소 배출가스 중 SO2 농도에 따른 응축성먼지 변화에 관한 연구)

  • Yu, JeongHun;Lim, SeulGi;Song, Jihan;Lee, DoYoung;Yu, MyeongSang;Kim, JongHo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.5
    • /
    • pp.651-658
    • /
    • 2018
  • Particulate matter (PM) emitted from fossil fuel-combustion facilities can be classified as either filterable or condensable PM. The U.S. Environmental Protection Agency (EPA) defined condensable PM as material that is in the phase of vapor at the stack temperature of the sampling location which condenses, reacts upon cooling and dilution in the ambient air to form solid or liquid in a few second after the discharge from the stack. Condensable PM passed through the filter media and it is typically ignored. But condensable PM was defined as a component of primary PM. This study investigates the change of condensable PM according to the variation in the sulfur dioxide of combustion gas. Domestic oil boilers were used as the source of emission ($SO_2$) and the level of $SO_2$ concentration (0, 50, 80, and 120 ppm) was adjusted by diluting general light oil and marine gas oil (MGO) that contains sulfur less than 0.5%. Condensable PM was measured as 2.72, 6.10, 8.38, and $13.34mg/m^3$ when $SO_2$ concentration in combustion gas were 0, 50, 80, and 120 ppm respectively. The condensable PM tended to increase as the concentration of $SO_2$ increased. Some of the gaseous air pollutants emitted from the stack should be considered precursors of condensable PM. The gas phase pollutants which converted into condensable PM should reduced for condensable PM control.

Conceptual Design of Turbine Exhaust System for 3rd stage of Launch Vehicle (한국형발사체 3단 터빈배기부 개념설계)

  • Shin, DongSun;Kim, KyungSeok;Han, SangYeop;Bang, JeongSuk;Kim, HyenWoong;Jo, DongHyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1068-1071
    • /
    • 2017
  • The turbine exhaust system consists of a turbine flange, heat exchanger, exhaust duct and thrust nozzle. Heat exchanger is used for the launch vehicle because of the advantage of reducing the weight of the helium gas and the storage tank by using the heat exchanger pressurization method compared to the cold gas pressurizing method. Since the gas generator is combusted in fuel-rich condition, the soot is contained in the combustion gas. Hence, the heat exchanger should be designed considering the reduction of the heat exchange efficiency due to the soot effect. In addition, the uncertainty of the heat exchange calculation and the evaluation of the influence of the combustion gas soot on the heat exchange can not be completely calculated, so the design requirements must include a structure that can guarantee and control the temperature of the heat exchanger outlet. In this paper, it is described that the component allocation, the design method considering the manufacture of internal structure, the advantages of new concept of nozzle design.

  • PDF

Thermal-hydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system

  • Wang, Chenglong;Sun, Hao;Tang, Simiao;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • Small nuclear reactor features higher power capacity, longer operation life than conventional power sources. It could be an ideal alternative of existing power source applied for special equipment for terrestrial or underwater missions. In this paper, a 25kWe heat pipe cooled reactor power source applied for multiple use is preliminary designed. Based on the design, a thermal-hydraulic analysis code for heat pipe cooled reactor is developed to analyze steady and transient performance of the designed nuclear reactor. For reactor design, UN fuel with 65% enrichment and potassium heat pipes are adopted in the reactor core. Tungsten and LiH are adopted as radiation shield on both sides of the reactor core. The reactor is controlled by 6 control drums with B4C neutron absorbers. Thermoelectric generator (TEG) converts fission heat into electricity. Cooling water removes waste heat out of the reactor. The thermal-hydraulic characteristics of heat pipes are simulated using thermal resistance network method. Thermal parameters of steady and transient conditions, such as the temperature distribution of every key components are obtained. Then the postulated reactor accidents for heat pipe cooled reactor, including power variation, single heat pipe failure and cooling channel blockage, are analyzed and evaluated. Results show that all the designed parameters satisfy the safety requirements. This work could provide reference to the design and application of the heat pipe cooled nuclear power source.

Performance Evaluation for Fast Conversion from Urea to an Ammonia Conversion Technology with a Plasma Burner (플라즈마 버너를 적용한 요소수에서 암모니아로의 고속 전환 기술 성능 평가)

  • Jo, Sungkwon;Kim, Kwan-Tae;Lee, Dae Hoon;Song, Young-Hoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.5
    • /
    • pp.526-535
    • /
    • 2016
  • Recently, fine dust in atmosphere have been considerably issued as a harmful element for human. Nitrogen oxide ($NO_x$) exhausted from diesel engines and power plants has been disclosed as a main source of secondary production of fine dust. In order to prevent exhausting these nitrogenous compounds into atmosphere, a treatment system with selective catalytic reduction (SCR) catalyst with ammonia as a reductant has been used in various industries. Urea solution has been widely studied to supply ammonia into a SCR catalytic reactor, safely. However, the conversion of urea solution to ammonia has several challenges, especially on a slow conversion velocity. In the present study, a fast urea conversion system including a plasma burner was suggested and designed to evaluate the performances of urea conversion and initial operation time. A designed lab-scale facility has a plasma burner, urea nozzle, mixer, and SCR catalyst which is for hydrolysis of isocyane. Flow rate of methane that is a fuel of the plasma burner was varied to control temperatures in the urea conversion facility. From experimental results, it is found that urea can be converted into ammonia using high temperature condition of above $400^{\circ}C$. In the designed test facility, it is found that ammonia can be produced within 1 min from urea injection and the result shows prospect commercialization of proposed technology in the SCR facilities.

Investigating Heavy Water Zero Power Reactors with a New Core Configuration Based on Experiment and Calculation Results

  • Nasrazadani, Zahra;Salimi, Raana;Askari, Afrooz;Khorsandi, Jamshid;Mirvakili, Mohammad;Mashayekh, Mohammad
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • The heavy water zero power reactor (HWZPR), which is a critical assembly with a maximum power of 100 W, can be used in different lattice pitches. The last change of core configuration was from a lattice pitch of 18-20 cm. Based on regulations, prior to the first operation of the reactor, a new core was simulated with MCNP (Monte Carlo N-Particle)-4C and WIMS (Winfrith Improved Multigroup Scheme)-CITATON codes. To investigate the criticality of this core, the effective multiplication factor ($K_{eff}$) versus heavy water level, and the critical water level were calculated. Then, for safety considerations, the reactivity worth of $D_2O$, the reactivity worth of safety and control rods, and temperature reactivity coefficients for the fuel and the moderator, were calculated. The results show that the relevant criteria in the safety analysis report were satisfied in the new core. Therefore, with the permission of the reactor safety committee, the first criticality operation was conducted, and important physical parameters were measured experimentally. The results were compared with the corresponding values in the original core.

Experimental Study on Heat Release in a Lean Premixed Dump Combustor Using OH Chemiluminescence Images (희박 예혼합 덤프 연소기에서 OH 자발광을 이용한 열 방출에 관한 실험적 연구)

  • Moon, Gun-Feel;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1368-1375
    • /
    • 2004
  • Measurements of OH chemiluminescence in an atmospheric pressure, laboratory-scale dump combustor at equivalence ratios ranging from 0.63 to 0.89 were reported. The signal from the first electronically excited state of OH to ground state was detected through a band-pass filter with an ICCD. The objectives of this study are two: One is to see the effects of equivalence ratio on global heat release rate and local Rayleigh index distribution. To get the local Rayleigh index distribution, the line-of-sight images were inverted by tomographic method, such as Abel do-convolution. Another aim is to investigate the validity of using OH chemiluminescence acquired with an ICCD as a qualitative measure of local heat release. For constant inlet velocity and temperature, the overall intensities of OH emission acquired at different equivalence ratio showed periodic and higher value at high equivalence ratio. OH intensity averaged over one period of pressure increased exponentially with equivalence ratio. Local Rayleigh index distribution clearly showed the region of amplifying or damping the combustion instability as equivalence ratio increased. It could provide an information/insights on active control such as secondary fuel injection. Finally, local heat release rate derived from reconstructed OH images were presented fur typical locations.

Microstructure and plasma resistance of Y2O3-BN composites (Y2O3-BN 복합체의 미세구조 및 내플라즈마 특성)

  • Lee, Hyun-Kyu;Lee, Seokshin;Kim, Bi-Ryong;Park, Tae-Eon;Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.3
    • /
    • pp.127-132
    • /
    • 2014
  • $Y_2O_3$-BN ceramic composites were fabricated from the slurries of yttria powder with average particle size of 3~10 ${\mu}m$. The slurry was fabricated by mixing PVA binder, NaOH for Ph control, PEG, BN powder and $Y_2O_3$ powder. The mixed $Y_2O_3$ powders were obtained by spray drying process from the slurry. The $Y_2O_3$-BN composite specimen was shaped in size of ${\O}14mm$ and then sintered at $1550^{\circ}C$ and $1600^{\circ}C$, respectively. The characteristics, microstructure, purities, densities, bulk resistance, thermal expansion, hardness and plasma resistance of the $Y_2O_3$-BN composites were investigated with the function of BN contents and sintering temperature.

Simulation and Analysis of Dynamic Characteristics of a Turbo-shaft Engine (터보 축 엔진의 동적특성 해석 및 시뮬레이션)

  • Kim, Se-Hyun;Kim, Hae-Dong;Park, Sung-Su;Yoon, Sug-Joon;Kim, Jae-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.315-318
    • /
    • 2007
  • A dynamic simulation of a turbo-shaft engine was performed for analysis of transient-state and engine-starting characteristics using the MATLAB/SIMULINKTM. The turbo-shaft engine was modelled based on thermodynamic and rotor dynamic relations. The analysis of engine starting characteristics was performed by monitoring the rate of the pressure, temperature and mechanical torque changes along the engine stations by the torque input generated from the accessary power unit and transmitted to the power turbine. The simulation of the transient-state characteristics of the engine was performed under fuel flow rate increase from the steady-state condition. For the future study, engine control unit will be added to the basic turbo-shaft engine model to enhance capability of engine performance simulation.

  • PDF

Energy Consumption in Mushroom Canning Factory (양송이통조림 가공중의 에너지소비량 조사연구)

  • Lee, Dong-Sun;Park, Know-Hyun;Shin, Hyu-Nyun;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.328-333
    • /
    • 1981
  • As a step to investigate energy conservation in canneries, energy consumption pattern and energy usages of various unit operations in a mushroom cannery were examined. The results are as follows; 1. In the mushroom cannery, fuel oil and electricity were used mainly for temperature control of mushroom growing house in winter and various cultivation operation respectively. To grow and process 1 kg of mushroom, thermal energy of 4634 kcal and electrical energy of 0. 116 kwh were consumed. About 80% of all energy was consumed for cultivation. 2. Steam qualities at each respective processing line were $92{\sim}94%$, giving no great differences among lines. 3. As a direct energy in 1 day processing operations of 8 tons of mushroom, thermal energy of $301.5{\times}10^{4}kcal$ and electrical energy of 60.1 kwh were used. The energy intensive operations were blanching (35%) and retorting (38%).

  • PDF