• Title/Summary/Keyword: Temperature Control of Fuel

Search Result 470, Processing Time 0.023 seconds

The Effect of Control of Low Temperature Oxidation using DME-gasoline Fuel Mixture on the HCCI Combustion (저온산화반응 제어가 DME-가솔린 혼합연료의 HCCI 연소에 미치는 영향)

  • Park, Youngjin;Lim, Ocktaeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.83-90
    • /
    • 2014
  • The main purpose of the study is to investigate the ideal manner and ratio to inject gasoline and DME simultaneously into intake port, and moreover to confirm the characteristics of combustion and emission of engine. Experimental conditions are 1200 rpm, compression ratio 8.5, intake air temperature (383 K). Internal cylinder pressure was collected to confirm the characteristics of combustion in order to calculate the heat release rate in the cylinder. In addition, HORIBA (MEXA 7100) which was possible analyzing emissions (NOx, CO, HC) was used. Vanguard gasoline engine (23HP386447) was used in this experiment. The result show that fuel design (DME-Gasoline) leads to the decrease of low temperature heat release, which is a benefit for higher-load on the HCCI engine. Also, IMEP and the indicated thermal efficiency increase with combustion-phasing retard, and these observations can be explained by considering the control of low temperature oxidation of DME.

Uncertainty quantification of the power control system of a small PWR with coolant temperature perturbation

  • Li, Xiaoyu;Li, Chuhao;Hu, Yang;Yu, Yongqi;Zeng, Wenjie;Wu, Haibiao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2048-2054
    • /
    • 2022
  • The coolant temperature feedback coefficient is an important parameter of reactor core power control system. To study the coolant temperature feedback coefficient influence on the core power control system of small PWR, the core power control system is built with the nonlinear model and fuzzy control theory. Then, the uncertainty quantification method of reactor core parameters is established based on the Latin hypercube sampling method and the Bootstrap method. Finally, under the conditions of reactivity step perturbation and coolant inlet temperature step perturbation, uncertainty analysis for two cases is carried out. The result shows that with fuzzy controller and fuzzy PID controller, the uncertainty of the coolant temperature feedback coefficient affects the core power control system, and the maximum uncertainties of core relative power, coolant temperature deviation, fuel temperature deviation and total reactivity are acceptable.

Metal Fuel Development and Verification for Prototype Generation IV Sodium-Cooled Fast Reactor

  • Lee, Chan Bock;Cheon, Jin Sik;Kim, Sung Ho;Park, Jeong-Yong;Joo, Hyung-Kook
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1096-1108
    • /
    • 2016
  • Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR) to be built by 2028. U-Zr fuel is a driver for the initial core of the PGSFR, and U-transuranics (TRU)-Zr fuel will gradually replace U-Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U-Zr fuel, work on U-Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U-TRU-Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor) fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic-martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.

A Study on DME Conversion rate using New Catalyst (신 촉매를 이용한 DME 전환율에 관한 연구)

  • Jeong, I.S.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.123-128
    • /
    • 2011
  • It has been stand high in estimation to converse from Carbon dioxide to Dimethyl Ether in new alternative fuel energy division in 21C, especially Using of DME in point of view of transportation fuel has been discussed of a new clean energy which is very lower of exhaust gas than gasoline and diesel energy. In this paper it is used ZSM-5 and I developed new catalyst by addition of cerium to control acidity. The new catalyst was proved high conversion rate, when it was conversed from methanol to DME, there wasn't any additional material except DME and water, and I overlooked reaction temperature, reaction time, amount of catalyst, amount of added cerium, effect of water content in methanol, reaction temperature by making change of reaction time. I have conclude that conversion rate to DME was increased as increased of catalyst amounts. The best catalyst condition of without additional product was treated poisoning from ZSM-5 to 5% cerium and new catalyst was not effected in purity of fuel methanol.

Establishing HP/LP-EGR System and Founding Operating Strategy of Low Temperature Combustion Engine to Improve Fuel Consumption (연료소비율 개선을 위한 고압/저압 배기재순환 시스템 구축 및 저온연소 엔진의 운전전략 수립)

  • Shin, Seunghyup;Han, Youngdeok;Shim, Euijoon;Kim, Duksang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.81-89
    • /
    • 2014
  • This study researched on the effect of HP/LP-EGR system to improve fuel consumption of Low Temperature Combustion Engine. Firstly, low temperature combustion engine with HP/LP-EGR system was established using 6.0L wastegate turbocharger HDDI engine. And suppliable EGR rate of the engine was proven to be enough to realize stable low temperature combustion. Then, optimum operating strategy was founded to develop fuel consumption of the engine. Control parameters were HP/LP-EGR valve and IPCV(Intake Pressure Control Valve) duty. Experiments method was that characteristics of the engine were measured and analyzed according to HP/LP-EGR strategies while EGR rate was fixed. Operating range for the strategy were divided into three parts, low load for low temperature combustion, high load for conventional diesel combustion, and transient condition. Finally, with the above strategy of this study, BSFC of the engine was improved about 2% compared to the base engine, and emission level, NOx and PM, met Tier4Final emission regulation.

Operating Method to Maximize Life Time of 5 kW High Temperature Polymer Exchange Membrane Fuel Cell Stack (5 kW 고온 고분자연료전지 스택 수명 극대화를 위한 운전 방법론)

  • KIM, JIHUN;KIM, MINJIN;SOHN, YOUNG-JUN;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.144-154
    • /
    • 2016
  • HT-PEMFC (high temperature polymer electrolyte membrane fuel cell) using PA (phosphoric acid) doped PBI (polybenzimidazole) membrane has been researched for extending the lifetime. However, the existing work on durability of HT-PEMFC focuses on identifying degradation causes of lab scale. The short life time of HT-PEMFC is still the problem for its commercialization. In this paper, an operating method to maximize life time of 5kW HT-PEMFC stack are proposed. The proposed method includes major steps such as minimization of OCV (Open Circuit Voltage) exposure, control of the proper stack temperature, and N2 purging for the stack. This long life operating method was based on the fragmentary results of degradation from previous research works. Experimentally, the 5 kW homemade HT-PEMFC stack was operated for a long time based on the proposed method and the stack successfully can operate within the desired degradation rate for the target life time.

Effects of Process Parameters on the Powder Characteristics of Uranium Oxide Kernel Prepared by Sol-gel Process (Sol-gel 공정을 이용한 UO2 kernel 제조에서 공정변수가 입자특성에 미치는 영향)

  • Kim, Yeon-Ku;Jeong, Kyung-Chai;Oh, Seung-Chul;Suhr, Dong-Soo;Cho, Moon-Sung
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.254-261
    • /
    • 2009
  • In this study, we investigated the unit process parameters in spherical $UO_2$ kernel preparation. Nearly perfect spherical $UO_3$ microspheres were obtained from the 0.6M of U-concentration in the broth solution, and the microstructure of the $UO_2$ kernel appeared the good results in the calcining, reducing, and sintering processes. For good sphericity, high density, suitable microstructure, and no-crack final $UO_2$ microspheres, the temperature control range in calcination process was $300{\sim}450^{\circ}C$, and the microstructure, the pore structure, and the density of $UO_2$ kernel could be controlled in this temperature range. Also, the concentration changes of the ageing solution in aging step were not effective factor in the gelation of the liquid droplets, but the temperature change of the ageing solution was very sensitive for the final ADU gel particles.

Experimental Study on HCCI Combustion Characteristics of n-heptane and iso-octane Fuel/air Mixture by using a Rapid Compression Machine (급속압축장치를 이용한 노말헵탄.이소옥탄 혼합연료의 HCCI 연소특성에 대한 연구)

  • Lim, Ock-Taeck
    • Journal of ILASS-Korea
    • /
    • v.16 no.4
    • /
    • pp.167-175
    • /
    • 2011
  • The HCCI engines have been known with high efficiency and low pollution and can be actualized as the new internal combustion engines. However, As for(??) the ignition and combustion depend strongly on the oxidation reaction of the fuel, so it is difficult to control auto-ignition timing and combustion duration. Purpose of this paper is creating the database for development of multi-dimensional simulation and investigating the influence of different molecular structure. In this research, the effect of n-heptane mole ratio in fuel (XnH) on the ignition delay from homogeneous charge compression ignition(HCCI) has been investigated experimentally. By varying the XnH, it was possible to ascertain whether or not XnH is the main resource of ignition delay. Additionally, the information on equivalence ratio for varying XnH was obtained. The tests were performed on a RCM (Rapid Compression Machine) fueled with n-heptane and iso-octane. The results showed that decreasing XnH (100, 30, 20, 10,0), the ignition delays of low temperature reaction (tL) and high temperature reaction (tH) is longer. And the temperature of reaction increases by about 30K. n-heptane partial equivalence ratio (fnH) affect on tL.and TL. When ${\phi}$nH was increased as a certain value, tL was decreased and TL was increased.

New Start-Up Logic for Microturbine by Constant Power Control under an Extremely Low Temperature (극저온 환경에서의 정 출력 제어를 적용한 마이크로터빈의 새로운 시동 로직 개발)

  • Rho, Min-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1249-1255
    • /
    • 2006
  • This paper presents a constant power control logic for perfect starting a microtubine in vehicle. Under extremely low temperature, performance of the start-up system is severely dropped than that of room temperature because of increasing of load of mechanical parts including engine core and drop of the lead-acid battery capacity. Unfortunately, performance drop of lead-acid battery makes severe problems that cause a malfunction of fuel and lubrication system and power fail of digital devices. So we propose the new start-up logic by constant output power control of lead-acid battery using PWM inverter controller for preventing above problems and keeping good performance of start-up system for microturbine. Also, we prove usefulness of new start-up logic through experimental results under $-32^{\circ}C$ ambient temperature.

Numerical investigation of the critical heat flux in a 5 × 5 rod bundle with multi-grid

  • Liu, Wei;Shang, Zemin;Yang, Shihao;Yang, Lixin;Tian, Zihao;Liu, Yu;Chen, Xi;Peng, Qian
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1914-1928
    • /
    • 2022
  • To improve the heat transfer efficiency of the reactor fuel assembly, it is necessary to accurately calculate the two-phase flow boiling characteristics and the critical heat flux (CHF) in the fuel assembly. In this paper, a Eulerian two-fluid model combined with the extended wall boiling model was used to numerically simulate the 5 × 5 fuel rod bundle with spacer grids (four sets of mixing vane grids and four sets of simple support grids without mixing vanes). We calculated and analyzed 11 experimental conditions under different pressure, inlet temperature, and mass flux. After comparing the CHF and the location of departure from the nucleate boiling obtained by the numerical simulation with the experimental results, we confirmed the reliability of computational fluid dynamic analysis for the prediction of the CHF of the rod bundle and the boiling characteristics of the two-phase flow. Subsequently, we analyzed the influence of the spacer grid and mixing vanes on the void fraction, liquid temperature, and secondary flow distribution. The research in this article provides theoretical support for the design of fuel assemblies.