• Title/Summary/Keyword: Temperature Contour

Search Result 128, Processing Time 0.027 seconds

Submicro-displacement Measuring System with Moire Interferometer and Application to the Themal Deformation of PBGA Package (무아레 간섭계 초정밀 변위 측정장치의 설계 및 PBGA 패키지 열변형 측정에의 응용)

  • Oh, Ki-Hwan;Joo, Jin-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1646-1655
    • /
    • 2004
  • A description of the basic principles of moire interferometry leads to the design of a eight-mirror four-beam interferometer for obtaining fringe patterns representing contour-maps of in-Plane displacements. The technique is implemented by the optical system using an environmental chamber for submicro-displacement mesurement. In order to estimate the reliability and applicabili쇼 of the system developed, the measurement of coefficient of thermal expansion (CTE) for a aluminium block is performed. Consequently, the system is applied to the measurement of thermal deformation of a WB-PBGA package assembly. Temperature dependent analyses of global and local deformations are presented to study the effect of the mismatch of CTE between materials composed of the package assemblies. Bending displacements of the packages and average strains of solder balls are documented. Thermal induced displacements calculated by FEM agree quantitatively with experimental results.

Optimization of Kiln Process Parameters of Low-Temperature Sintering Lightweight Aggregate by Response Surface Analysis (반응표면분석법에 따른 저온소성 경량골재의 킬른공정변수 최적화)

  • Lee, Han-Baek;Seo, Chee-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.365-372
    • /
    • 2010
  • This paper was to evaluate the influence of kiln process parameter(kiln angle, kiln rotating speed) of lightweight aggregate using waste glass and bottom ash with industrial by-products on thermal conductivity, density, water absorption, fracture load and porosity by response surface analysis. In the results of surface plot and contour plot, it has verified that kiln residence time of lightweight aggregate increase as kiln angle and rotating speed decreases. For this reason, pore size and quantity tend to increase by active reaction of forming agent. It seems to be that increase in pore size and quantity have caused decreasing density, fracture load and thermal conductivity, and increasing water absorption. In conclusion, optimization of kiln process parameter on thermal conductivity, density, water absorption, fracture load and porosity by response surface analysis are kiln angle 2.4646%, kiln rotating speed 40.7089 rpm.

Effect of Gun Nozzle Geometry, Increase in the Entrance Convergent Section Length and Powder Injection Position on Cold Sprayed Titanium Coatings

  • Sakaki, Kazuhiko;Shinkai, Shuhei;Ebara, Nobuharu;Shimizu, Yasuo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.238-239
    • /
    • 2006
  • Nozzle geometry influences gas dynamics making sprayed particle behavior one of the most important parameters in cold spray process. Gas flows at the entrance convergent section of the nozzle takes place at relatively high temperature and are subsonic. Thus, this region is a very suitable environment for heating spray particle. In this study, numerical simulation and experiments were conducted to investigate the effect of nozzle contour, entrance geometry of nozzle and powder injection position at nozzle on the cold spray process. The process changes were observed through numerical simulation studies and the results were used to find a correlation with coating properties.

  • PDF

Numerical Study on Comparison of Serpentine and Parallel Flow Channel in High-temperature Proton Exchange Membrane Fuel Cells (고온형 고분자전해질형 연료전지에서의 사형 유로와 평행 유로 성능비교에 대한 수치해석적 연구)

  • AHN, SUNGHA;OH, KYEONGMIN;JU, HYUNCHUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.41-55
    • /
    • 2018
  • General polymer electrolyte fuel cell (PEMFC) operates at less than $80^{\circ}C$. Therefore liquid phase water resulting from electrochemical reaction accumulates and floods the cell which in turn increases the mass transfer loss. To prevent the flooding, it is common to employ serpentine flow channel, which can efficiently export liquid phase water to the outlet. The major drawback of utilizing serpentine flow channel is the large pressure drop that happens between the inlet and outlet. On the other hand, in the high temperature polymer electrolyte fuel cell (HT-PEMFC), since the operating temperature is 130 to $180^{\circ}C$, the generated water is in the state of gas, so the flooding phenomenon is not taken into consideration. In HT-PEMFCs parallel flow channel with lower pressure drop between the inlet and outlet is employed therefore, in order to circulate hydrogen and air in the cell less pumping power is required. In this study we analyzed HT-PEMFC's different flow channels by parallel computation using previously developed 3-D isothermal model. All the flow channels had an active area of $25cm^2$. Also, we numerically compared the performance of HT-PEMFC parallel flow channel with different manifold area and Rib interval against the original serpentine flow channel. Results of the analysis are shown in the form of three-dimensional contour polarization curves, flow characteristics in the channel, current density distribution in the Membrane, overpotential distribution in the catalyst layer, and hydrogen and oxygen concentration distribution. As a result, the performance of a real area fuel cell was predicted.

Dynamic Changes in Browning Reaction Substrates of Polygonatum odoratum Roots during Roasting (둥글레의 볶음처리에 따른 갈변반응 기질의 동적변화)

  • 권중호;류기철;이기동
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.4
    • /
    • pp.654-661
    • /
    • 1997
  • Response surface methodology was applied to monitor dynamic changes in free sugars and free amino acids associated with browning reaction during roasting of Polygonatum odoratum roots. Second-order model for qualities of water- soluble extracts was employed to generate contour maps and response surfaces. Browning color intensity of water-soluble extracts was increased with the roasting time up to around 14$0^{\circ}C$, but decreased in increasing temperature above L6O"C. Free sugars, mainly composed of sucrose and fructose, were remarkably decreased at roasting under the higher temperature and longer time, while glucose linearly increased with the increase of roasting temperature up to 15$0^{\circ}C$. Most of free amino acids was decreased in their amounts in Proportion to the roasting temperature and time, while threonine and lysine were insignificantly increased under the roasting conditions at above 17$0^{\circ}C$ and 60min.0min.

  • PDF

Optimal Condition for Manufacturing Water Extract from Mandarin Orange Peel for Colored Rice by Coating (유색미 제조용 감귤과피 물추출 균질액의 제조조건 최적화)

  • Seo, Sung-Soo;Youn, Kwang-Sup;Shin, Seung-Ryeul;Kim, Soon-Dong
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.884-892
    • /
    • 2003
  • This study was conducted to optimize the water homogenization process of mandarin orange peel for colored rice. Four variables were used to determine the optimum conditions for homogenization speed, time, temperature, and water volume with a five level central composite design and response surface methodology. The process was optimized using the combination of EI and b values of rice coated with water extract of the mandarin orange peel. The effect of water volume was the most significant compared to the other variables on the quality of water homogenate. The regression polynomial model was a suitable (p>0.05) model by lack-of-fit analysis showing high significance. To optimize the process, based on surface response and contour plots, individual contour plots for the response variables were superimposed. The optimum conditions for manufacturing water extract from mandarin orange was with 8,500 rpm homogenization speed, 2.8 min time, $53^{\circ}C$ temperature, and 42 mL water volume with the maximum of restricted variables of EI above 400 and h value above 24.

Optimization of MOF-801 Synthesis Using Sequential Design of Experiments (순차적 실험계획법을 이용한 MOF-801 합성공정 최적화)

  • Lee, Min Hyung;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.621-626
    • /
    • 2021
  • A sequential design of experiments was used to optimize MOF-801 synthesis process. For the initial screening, a general 2k factorial design was selected followed by the central composition design, one of the response surface methods. A 23 factorial design based on the molar ratio of fumaric acid, dimethylformamide (DMF), and formic acid was performed to select the more suitable response variable for the design of experimental method among the crystallinity and BET specific surface area of MOF-801. After performing 8 synthesis experiments designed by MINITAB 19 software, the characteristic analysis was performed using XRD analysis and nitrogen adsorption method. The crystallinity with R2 = 0.999 was found to be more suitable for the experimental method than that of BET specific surface area. Based on analysis of variance (ANOVA), it was confirmed that the molar ratio of fumaric acid and formic acid was a major factor in determining the crystallinity of MOF-801. Through the response optimization and contour plot of two factors, the optimal molar ratio of ZrOCl2·8H2O : fumaric acid : DMF : formic acid was 1 : 1 : 39 : 35. In order to optimize the synthesis process, the central composition design on synthesis time and temperature was performed under the identical molar ratio of precursors. The results derived through the designed 9 synthesis experiments were calculated using the quadratic model equation. Thus, the maximum crystallinity of MOF-801 predicted under the synthesis time and temperature of 7.8 h and 123 ℃, respectively.

Storage Stability of Baikseolgi (백설기의 저장성 연구)

  • Yeo, Kyung-Mok;Chang, Moon-Jeong;Kim, Myung-Hwan
    • Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.218-222
    • /
    • 1999
  • The effects of storage temperature, moisture content and the concentration of additives, such as sucrose fatty acid ester(SE), isomaltooligosaccharide(IO) and glycerin(GL), on texture properties, hardness(HA), cohesiveness(CO) and chewiness(CH) of Baikseolgi after 7 days storage were analyzed by response surface methodology(RSM). The contour values of HA of SE added Baikseolgi at 20, 50 and $80^{\circ}C$ of storage temperate were $1500{\sim}3200,\;500{\sim}1300$ and $100{\sim}400\;g_f$, respectively. The HA of IO or GL added Baikseolgi decreased with increased storage temperature, moisture content and additive concentration. The storage temperature was the most significant factor affecting the HA of Baikseolgi. However, the second and third significant factors were moisture content and additive concentration, respectively. These results imply that the control of storage temperature is the most effective method to increase the storage stability of Baikseolgi. The CO of IO or GL added Baikseolgi was increased by the change of strage temperature from $20{\circ}\;to\;50{\circ}$. While, there was no significant difference between $50{\circ}\;and\;80{\circ}$ of storage temperature. The CO of IO or GL added Baikseolgi was maximized around 40% of moisture content and that of GL added Baikseolgi was minimized around 0.5% of GL concentration. The storage temperature, additive concentration and moisture content were the first, second and third affacing factors on the CO of Baikseolgi, respectively. The CH of Baikeolgi was decreased by increasing storage temperature, moisture content and additive concentration. The storage temperature, moisture content and additive concentration were the first, second and third affacting factors on the CH of Baikseolgi, respectively.

  • PDF

Numerical Investigation of Blackbody Design for Spaceborne Image Sensor Non-uniformity Characteristic Calibration (우주용 영상센서 출력특성 교정용 흑체 설계의 해석적 유효성 검토)

  • Kim, Hye-In;Choi, Pil-Gyeong;Jo, Mun-Shin;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.3
    • /
    • pp.42-50
    • /
    • 2020
  • For calibration of the non-uniformity characteristics of the space-borne infrared (IR) sensor, a black body system shall provide estimated representative surface temperature at various reference temperatures by using the limited number of temperature sensors. The black body system proposed in this study has an I/F flange integrated on the rear side of the black body for installation of the heat pipe to transfer the residual heat after the black body heat-up. This design allows for obtaining a circular symmetric thermal contour of black body with low surface temperature gradient, leading to much easier representative temperature estimation. Additionally, this provides mechanically stable thermal I/F under launch and on-orbit environmental loads, as well as allowing a fail safe design by using the two heat pipes. Also, a highly accurate temperature estimation is possible even if the temperature sensors are attached on the surface on the rear side of the black body. The effectiveness of the thermal design of the proposed black body has been verified through the on-orbit thermal analysis. Based on the results, the representative surface temperature was estimated according to the number and position of the temperature sensors.

Three dimensional flow analysis within a profile extrusion die by using control volume finite-element method

  • Kim, Jongman;Youn, Jae-Ryoun;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.2
    • /
    • pp.97-106
    • /
    • 2001
  • Three-dimensional flow analysis was performed by using the control volume finite-element method for design of a profile extrusion die. Because polymer melt behavior is complicated and cross-sectional shape of the profile extrusion die is changing continuously, the fluid flow within the die must be analyzed three-dimensionally. A commercially available polypropylene is used for theoretical and experimental investigations. Material properties are assumed to be constant except for the viscosity. The 5-constant modified Cross model is used for the numerical analysis. A test problem is examined in order to verify the accuracy of the numerical method. Simulations are performed for conditions of three different screw speeds and three different die temperatures. Predicted pressure distribution is compared with the experimental measurements and the results of the previous two-dimensional study. The computational results obtained by using three dimensional CVFEM agree with the experimental measurements and are more accurate than those obtained by using the two-dimensional cross-sectional method. The velocity profiles and the temperature distributions within several cross-sections of the die are given as contour plots.

  • PDF