• Title/Summary/Keyword: Temperature Contour

Search Result 128, Processing Time 0.028 seconds

Contour Integral Method for Crack Detection

  • Kim, Woo-Jae;Kim, No-Nyu;Yang, Seung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.6
    • /
    • pp.665-670
    • /
    • 2011
  • In this paper, a new approach to detect surface cracks from a noisy thermal image in the infrared thermography is presented using an holomorphic characteristic of temperature field in a thin plate under steady-state thermal condition. The holomorphic function for 2-D heat flow field in the plate was derived from Cauchy Riemann conditions to define a contour integral that varies according to the existence and strength of a singularity in the domain of integration. The contour integral at each point of thermal image eliminated the temperature variation due to heat conduction and suppressed the noise, so that its image emphasized and highlighted the singularity such as crack. This feature of holomorphic function was also investigated numerically using a simple thermal field in the thin plate satisfying the Laplace equation. The simulation results showed that the integral image selected and detected the crack embedded artificially in the plate very well in a noisy environment.

Aerodynamic Optimal Design of Nozzle Contour for Supersonic Exit Mach Number

  • Mon, Khin Oo;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.335-338
    • /
    • 2010
  • A recent study for tracing the profiles of supersonic axisymmetric Minimum Length Nozzle with uniform and parallel flow at the exit section, the stagnation temperature is taken into account. The aim of this work is to add optimization algorithm to the supersonic nozzle design in order to get the optimum nozzle shape. The comparisons of the nozzle contours based on the method of characteristics are presented. The specific heats and their ratio vary with the stagnation temperature when this temperature of a perfect gas increases. An application is made for air in a supersonic nozzle.

  • PDF

An Experimental Study of the Temperature Characteristics of a Cutting Tool in Machining of Stainless Steel (스테인레스강 절삭가공에서 공구의 온도 특성에 대한 실험적 연구)

  • 권용기
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.1
    • /
    • pp.9-16
    • /
    • 1996
  • This is an experimental investigation of the temperature generated in a cutting tool during the machining of stainless steel. The temperature results from the wear of the cutting tool are considered in order to investigate the relation between cause and effect of these factors. This possibility has been tested using a thermocouple technique to record temperature vs. time curves for a variety of cutting conditions. This is done by employing a thermocouple inserted on the tool tip near the major cutting edge. Temperature distributions are calculated using finite element method and compared to the contour maps measured by an optical system. It suggests that the temperature gradients and the tool performance will be dependent on certain facotrs in tool geometry when cutting this material.

  • PDF

Thermal Stress Analysis of Ramjet Dome Port Part (램제트 돔 포트 부의 열응력 해석)

  • Kim, Seung-Joong;Choi, Young-Jin;Lee, Young-Shin;Kim, Jae-Hoon;Koo, Song-Hoe
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.716-721
    • /
    • 2004
  • In this study, dome port bringing up for discussion where the ramjet occurs in flying it presents the tendency of distribution of thermal contour due to temperature and pressure. It is assumed that the material of ramjet is steel for the ease of result analysis. It applied matrial property which it follows by temperature and input boundary condition that changing temperature and pressure on each region by time difference for transient analysis. Thermal analysis region is decided until dome port part is separated and operate analysis in 0.5 second. Finally we draw tendency of thermal contour in ramjet dome port part by temperature and pressure.

  • PDF

Optimization of Osmotic Dehydration for the Manufacturing of Dried Banana (건조바나나 제조를 위한 삼투건조공정의 최적화)

  • 윤광섭;장규섭;최용희
    • Food Science and Preservation
    • /
    • v.6 no.1
    • /
    • pp.55-60
    • /
    • 1999
  • A three variables by three level factorial design and response surface methodology were used to determine optimum conditions for osmotic dehydration of banana. The moisture loss, solid gain, weight loss and reduction of moisture content after osmotic dehydration were increased as temperature, sugar concentration and immersion time increased. The effect of concentration was more significant than those of temperature and time on mass transfer. Color difference and titratable acidity were decreased by higher concentration. Sweetness was increased by increasing sugar concentration, temperature, immersion time during osmotic dehydration. The regression models showed a significant lack of fit (p>0.5) and were highly significant with satisfying values of R2. To optimize osmotic dehydration, based on surface response and contour plots, superimposing the individual contour plots for the response variables. the optimum conditions for this process wire 26$^{\circ}C$, 44 $^{\circ}$brix and 2 hrs for moisture content, sweetness and color difference are less than 72%, 24 obrix and 10 degree.

  • PDF

Thermographic Detection of Surface Crack Using Holomorphic Function of Thermal Field

  • Kim, No-Hyu;Lim, Zong-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.296-301
    • /
    • 2012
  • This paper describes an analytic method for infrared thermography to detect surface cracks in thin plates. Traditional thermographic method uses the spatial contrast of a thermal field, which is often corrupted by noise in the experiment induced mainly by emissivity variations of target surfaces. This study developed a robust analytic approach to crack detection for thermography using the holomorphic function of a temperature field in thin plate under steady-state thermal conditions. The holomorphic function of a simple temperature field was derived for 2-D heat flow in the plate from Cauchy-Riemann conditions, and applied to define a contour integral that varies depending on the existence and strength of singularity in the domain of integration. It was found that the contour integral at each point of thermal image reduced the noise and temperature variation due to heat conduction, so that it provided a clearer image of the singularity such as cracks.

Electrical Characteristics of T5(28W) Fluorescent Lamp Ballast Circuit using Piezoelectric Transformer (압전트랜스포머를 이용한 T5(28W) 형광등 안정기 회로의 전기적 특성)

  • 황상모;류주현;황락훈;김주래;홍재일;박창엽;김종선
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.9
    • /
    • pp.736-743
    • /
    • 2001
  • Contour vibration mode piezoelectric transformers were designed and fabricated to the square plate with size of 27.5x27.5x2.6㎟ using PNW-PMN-PZT ceramics. Electrical characteristics of the piezoelectric transformer were investigated for fluorescent lap ballast application. The electrical properties and characteristic temperature rise were measured by oscilloscope and infrared temperature sensor. A 28W fluorescent lamp was successfully driven by the fabricated transformers. The electronic ballast using piezoelectric transformer showed an excellent output power of 28.85[W], efficiency of 86.3% and characteristic temperature rise of 15[$\^{C}$].

  • PDF

Simulation of aquifer temperature variation in a groundwater source heat pump system with the effect of groundwater flow (지하수 유동 영향에 따른 지하수 이용 열펌프 시스템의 대수층 온도 변화 예측 모델링)

  • Shim, Byoung-Ohan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.701-704
    • /
    • 2005
  • Aquifer Thermal Energy Storage (ATES) can be a cost-effective and renewable geothermal energy source, depending on site-specific and thermohydraulic conditions. To design an effective ATES system having influenced by groundwater movement, understanding of thermo hydraulic processes is necessary. The heat transfer phenomena for an aquifer heat storage are simulated using FEFLOW with the scenario of heat pump operation with pumping and waste water reinjection in a two layered confined aquifer model. Temperature distribution of the aquifer model is generated, and hydraulic heads and temperature variations are monitored at the both wells during 365 days. The average groundwater velocities are determined with two hydraulic gradient sets according to boundary conditions, and the effect of groundwater flow are shown at the generated thermal distributions of three different depth slices. The generated temperature contour lines at the hydraulic gradient of 0.00 1 are shaped circular, and the center is moved less than 5m to the groundwater flow direction in 365 days simulation period. However at the hydraulic gradient of 0.01, the contour center of the temperature are moved to the end of boundary at each slice and the largest movement is at bottom slice. By the analysis of thermal interference data between two wells the efficiency of the heat pump system model is validated, and the variation of heads is monitored at injection, pumping and no operation mode.

  • PDF

Factors affecting fracture of full contour monolithic zirconia dental prosthesis in laboratory process (구치부 심미수복, 풀지르코니아 크라운의 파절원인과 그 해결방안)

  • Lee, Soo Young
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.23 no.2
    • /
    • pp.77-79
    • /
    • 2014
  • There are several factors affected fractures of full contour zirconia (FCZ) dental prosthesis in laboratory process. First, residual moisture can cause zirconia cracks. Complete dry is requisite before zirconia sintering to prevent zirconia cracks. Second, slow cooling rate is essential to prevent cracks during zirconia sintering process. Cracks in bridge pontic area, thick dental implant prosthesis can be prevented by slow cooling rate such as 3 degree Celsius per minute during zirconia sintering. Third, slow heating rate and slow cooling rate during staining and glazing procedure is necessary to inhibit thermal shock of sintered dental zirconia. Lower preheat temperature of porcelain furnace is recommended. Finally, using diamond disc to open embrasure can lead cracks.

Electrical Characteristics of the Contour-Vibration-Mode Piezoelectric Transformer using PNW-PMN-PZT Ceramics (PNW-PMN-PZT세라믹스를 이용한 윤곽진동모드 압전트랜스포머의 전기적특성)

  • 류주현;오동언
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.7
    • /
    • pp.602-608
    • /
    • 2002
  • In this study, microstructural and piezoelectric characteristics of PNW-PMN-PZT ceramics manufactured using attrition milling method were investigated. Sintering temperature of the ceramics was varied from $1080^{\circ}C$ to $1240^{\circ}C$. With increasing sintering temperature, dielectric constant increased. In the specimen sintered at $1120^{\circ}C$, electromechanical coupling factor(Kp) and density showed the maxinum values of 0.546 and 7.78[$g/\textrm{cm}^3$], respectively. In the specimen sintered at $1160^{\circ}C$, mechanical quality factor(Qm) also showed the maxinum value of 1,943. Contour vibration mode piezoelectric transformer with the size of $27.5{\times}27.5{\times}2.5mm$ using PNW-PMN-PZT ceramics was manufactured and its driving characteristics for T5 fluorescent lamp was investigated. Taking into consideration temperature rise of 6.8[$^{\circ}C$] and efficiency of 98.23%, it can be concluded that the transformer is suitable for driving the T5 fluorescent lamp.