• Title/Summary/Keyword: Temperature Calibration Curve

Search Result 76, Processing Time 0.026 seconds

Development of Highly Sensitive Analytical Method for Evaluation of Evening Primrose Oil's Enhancing Effect in Prostaglandin E1(OP 1206) Biosynthesis

  • Lee, Sung-Hoon
    • Journal of People, Plants, and Environment
    • /
    • v.21 no.6
    • /
    • pp.485-492
    • /
    • 2018
  • This study aimed to develop and validate highly sensitive determination method of a prostaglandin ($PGE_1$, OP 1206) in human plasma by LC-MS/MS using column switching. Plasma stored at $-30^{\circ}C$ and treated with methanol effectively inhibited interferences synthesized post-sampling. Samples were added with internal standard and were separated by reversed-phase HPLC with a cycle time of 30min. The method was selective for OP 1206 and the regression models, based on internal standard, were linear across the concentration range 0.5-50 pg/mL with the limit of quantification of 0.5 pg/mL (limit of quantitation, LOQ) for OP 1206. The calibration curve of OP 1206 standards spiked in five individual plasma samples was linear ($r^2=0.9999$). Accuracy and precision at the concentrations of 0.5, 1.5, 5.0 and 40 pg/mL, and at the lower LOQ of 0.5 pg/mL were excellent at 20%. OP120 < 6 was stable in plasma samples for at least 24 hours at room temperature, 24 hours frozen at $-70^{\circ}C$, 24 hours in an auto sampler at $6^{\circ}C$, and for two freeze/unfreezing cycles. The validated determination method successfully quantified the concentrations of OP 1206 in plasma samples from simulated administrating a single $5{\mu}g$ OP 1206 formulation. Thus, this novel LC-MS/MS technique for drug separation, detection and quantitation is expected to become the standard highly-sensitive detection method in bioanalysis and to be applied to many low dose pharmaceutical products.

Determination of cyromazine in commercial insecticides using HPLC-DAD

  • Kim, Young-Wook;Han, Bok Hee;Kang, Young Eun;Rhee, Chae Hong;Seo, Sang-Ji;Kim, Soohee;Jeong, Wooseog;Her, Moon
    • Korean Journal of Veterinary Service
    • /
    • v.43 no.4
    • /
    • pp.261-265
    • /
    • 2020
  • Each commercial cyromazine insecticide has different HPLC conditions. The aim of this study was to establish a standardized chromatographic method for the determination of cyromazine in commercial insecticides. The separation was achieved on two C18 columns - Waters® Bondapak C (4×300 nm i.d., 10 ㎛) and X bridge (4.6×250 nm i.d., 5 ㎛) using a mobile phase composed of water/methanol/ethanolamine (76:24:0.1, v/v), with UV detection at wavelengths 230 nm and 254 nm. A total of six commercial cyromazine insecticides were analyzed. In this study, the optimal high-performance liquid chromatography conditions for the analysis of cyromazine were as follows: a mobile phase of water/methanol/ethanolamine (76:24:0.1, v/v) at a flow rate of 1.0 mL/min and a detection wavelength of 230 nm using a X bridge C18 column (4.6×250 nm i.d., 5 ㎛) at a column temperature of 25℃. The calibration curve was linear in the concentration range of 5~50 ㎍/mL, with a correlation coefficient of 0.99995. The cyromazine detection limit was 0.2 ㎍/mL, and the limit of quantification was 0.59 ㎍/mL. The percentage recovery ranged from 99.8% to 101.0% for cyromazine, and the relative standard deviation was not over 2.0%. The cyromazine concentration ranged from 92.7% to 109.4% and was within the acceptable range (90~120%) for the percent of the labeled amount. This method was found to be suitable for determining cyromazine in commercial insecticides.

Dyeability of Nylon Fabrics with Dyestuff for Supercritical Fluid Dyeing (1) : C.I. Disperse Red 167, C.I. Disperse Violet 93 (초임계 유체 염색용 염료에 따른 Nylon 섬유의 염색 특성 (1) : C.I. Disperse Red 167, C.I. Disperse Violet 93 Azo계 염료)

  • Choi, Hyunseuk;Park, Shin;Kim, Taeyoung
    • Textile Coloration and Finishing
    • /
    • v.32 no.4
    • /
    • pp.217-225
    • /
    • 2020
  • In this study, the dyeing characteristics of nylon fabric which is dyed with supercritical fluid were investigated. There were two dyes used in the dyeing experiment: C.I. Disperse Red 167 and C.I. Disperse Violet 93. Dyeing temperature, pressure, and leveling time were fixed at 110℃, 250bar, 60minutes, and the experiment was conducted with dyeing concentration of 0.1, 0.3, 0.5, and 0.85% o.w.f. The analysis of the experimental results was found out through the measurement of washing fastness and color coordinate. In addition, the calibration curve of each dye was drawn up and the amount of remaining dye was checked by measuring the absorbance of the residual dye. As a result of color difference measurement, as the concentration increased, the L⁎ value decreased and the K/S value increased. However, the increase in K/S value compared to the amount of input decreased as the concentration increased. The comparative experiment on the amount of residual dye(C.I. Disperse Red 167) in the pot showed that 99.14% of the amount was dyed at the concentration of 0.1% o.w.f, while it rapidly decreased to 77% at 0.85% o.w.f. C.I. Disperse Violet 93 dye also decreased from 0.5% o.w.f to 93.91%. In the washing fastness experiment of both dyes, the level of washing fastness began to decrease from samples dyed at 0.5% o.w.f. It may be because the simply absorbed dye was produced instead of completely being fixed in the amorphous region of the nylon fiber.

Qualitative and quantitative assessment of process related impurities in Brigatinib raw material and formulations using HPLC

  • Attada Tharun;Potnuru Jagadeesh;B Srinivasa Kumar;Kota Thirumala Prasad;Venkateswara Rao Anna
    • Analytical Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.180-190
    • /
    • 2023
  • The presence of process related impurities in any drug or the drug product was associated with its safety, stability and efficacy. The overall literature survey proved that there is no method published on the assessment of process related impurities in brigatinib. In this study, a simple, reliable and stable HPLC qualitative method was reported for quantification of process related impurities with easy and quick extraction procedure. The impurities along with standard brigatinib was resolved on Lichrospher® C18 (250 mm × 4.6 mm; 5 ㎛ particle size) column in room temperature using methanol, acetonitrile, pH 4.5 phosphate buffer in 55:25:20 (v/v) at 1.0 mL/min as mobile phase and UV detection at 261 nm. The method produces well resolved peaks at retention time of 4.60 min, 12.28 min, 3.37 min, 7.34 min and 8.39 min respectively for brigatinib, impurity A, B, C and D. The method produces a very sensitive detection limit of 0.0065 ㎍/mL, 0.0068 ㎍/mL, 0.0053 ㎍/mL and 0.0058 ㎍/mL for impurity A, B, C and D respectively with calibration curve linear in the concentration range of 22.5-135 ㎍/mL for brigatinib and 0.0225-0.135 ㎍/mL for impurities. The method produces all the validation parameters under the acceptable level and doesn't produces any considerable changes in peak area response while minor changes in the developed method conditions. The method can effectively resolve the unknown stress degradation products along with known impurities with less % degradation. The method can efficiently resolve and quantify the impurities in formulation and hence can suitable for the routine quality analysis of brigatinib in raw material and formulation.

Characterization of degradation products of the Balsalazide by Mass spectrometry: Optimization of stability-indicating HPLC method for separation and quantification of process related impurities of Balsalazide

  • Chilakabattina Naga Narasimha Babu;Ch. Srinivasa Reddy;Bhagya Kumar Tatavarti;M. Radha Madhavi;Venkateswara Rao Anna
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.25-38
    • /
    • 2024
  • The study aimed to investigate a novel approach by utilizing liquid chromatography (LC) and liquid chromatography-mass spectrometry (LC-MS) to separate, identify and characterize very nominal quantities of degradation products (DPs) of balsalazide along with its process related impurities without isolation from their reaction mixtures. The impurities along with balsalazide were resolved on spherisorb ODS2 (250×4.6 mm, 5.0 ㎛) column at room temperature using 0.2 M sodium acetate solution at pH 4.5 and methanol in the ratio of 55:45 (v/v) as mobile phase pumped isocratically at 1.0 mL/min as mobile phase and UV detection at 255 nm. The method shows sensitive detection limit of 0.003 ㎍/mL, 0.015 ㎍/mL and 0.009 ㎍/mL respectively for impurity 1, 2 and 3 with calibration curve liner in the range of 50-300 ㎍/mL for balsalazide and 0.05-0.30 for its impurities. The balsalazide pure compound was subjected to stress studies and a total of four degradation products (DPs) were formed during the stress study and all the DPs were characterized with the help of their fragmentation pattern and the masses obtained upon LC-MS/MS. The DPs were identified as 3-({4-[(E)-(4-hydroxyphenyl) diazenyl]benzoyl}amino)propanoic acid (DP 1), 4-[(E)-(4-hydroxyphenyl)diazenyl] benzamide (DP 2), 5-[(E)-(4-carbamoylphenyl)diazenyl]-2-hydroxybenzoic acid (DP 3) and 3-({4-[(E)-phenyldiazenyl]benzoyl}amino)propanoic acid (DP 4). Based on findings, it was concluded that, the proposed method was successfully applicable for routine analysis of balsalazide and its process related impurities in pure drug and formulations and also applicable for identification of known and unknown impurities of balsalazide.

Measurement of Biogenic Amines with a Chitopearl Enzyme Reactor (Chitopearl 효소 Reactor를 이용한 Biogenic Amines 측정)

  • Park, In-Seon;Kim, Dong-Kyung;Shon, Dong-Hwa;Cho, Yong-Jin;Kim, Nam-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.593-599
    • /
    • 1999
  • Substrate specificity of a flow-injection-analysis (FIA)-type biogenic amine sensor with enzyme reactor was determined. The enzyme reactor was prepared with a diamine oxidase immobilized on preactivated chitosan porous beads (Chitopearl) by intramolecular cross-linking via glutaraldehyde. The sensor showed a rapid response to putrescine and a quasi-linear calibration curve was obtained up to 15.0 mM. The optimal pH and temperature of the enzyme reactor system were 7.5 and $35^{\circ}C$. Interferences due to ATP-related compounds and trimethylamine, and the effects of NaCl and amino acids were measured. Inhibitory effects owing to these components could be mitigated by sample extraction with perchloric acid. Polyamines except putrescine were determined by a putrescine calibration range within 26.7%. This system was confirmed as rapid and convenient for biogenic amine determination.

  • PDF

Quantitative Analysis of t-Cinnamaldehyde of Cinnamomum cassia by $^1H-NMR$ Spectrometry ($^1H-NMR$을 이용한 계피의 t-cinnamaldehyde 정량분석)

  • Song, Myoung-Chong;Yoo, Jong-Su;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.267-272
    • /
    • 2005
  • trans-Cinnamaldehyde, a major component of Cinnamomum cassia, was quantitatively analyzed using the $^1H-NMR$ spectrometry. Applicability of this method was confirmed through observing the variation of chemical shift in the $^1H-NMR$ spectrum of t-cinnamaldehyde and the integration value according to various sample concentrations or running temperatures. When the $^1H-NMR$ spectrometry was run for t-cinnamaldehyde (7.1429 mg/ml) at 19, 25, 30, 40 and $50^{\circ}C$, the chemical shifts of the doublet methine signal due to an aldehyde group were observed at 9.7202, 9.7184, 9.7169, 9.7142 and 9.7124 ppm, respectively, to imply that the running temperature had no significant variation in the chemical shift of the signal. The integration values of the signal were $1.37\;(19^{\circ}C),\;1.37\;(25^{\circ}C),\;1.37\;(30^{\circ}C),\;1.37(40^{\circ}C)$ and $1.37(50^{\circ}C)$, respectively, to also indicate running temperature gave no effect on the integration value. When the sample solutions with various concentrations such as 0.4464, 0.8929, 1.7857, 3.5714, 7.1429 and 14.286 mg/ml were respectively measured for the $^1H-NMR$ at $25^{\circ}C$, the chemical shifts of the aldehyde group were observed at 9.7206, 9.7201, 9.7196, 9.7192, 9.7185 and 9.7174 ppm. Even though the signal was slightly shifted to the high field in proportion to the increase of sample concentration, the alteration was not significant enough to applicate this method. The calibration curve for integration values of the doublet methine signal due to the aldehyde group vs the sample concentration was linear and showed very high regression rate ($r^2=1.0000$). Meantime, the $^1H-NMR$ spectra (7.1429 mg/ml $CDCl_3,\;25^{\circ}C$) of t-cinnamaldehyde and t-2-methoxycinnamaldehyde, another constituent of Cinnamomum cassia, showed the chemical shifts of the aldehyde group as ${\delta}_H$ 9.7174 (9.7078, 9.7270) for the former compound and ${\delta}_H$ 9.6936 (9.6839, 9.7032) for the latter one. The difference of the chemical shift between two compounds was big enough to be distinguished using the NMR spectrometer with 0.45 Hz of resolution. The contents of cinnamaldehyde in Cinnamomum cassia, which were respectively extracted with n-hexane, $CHCl_3$, and EtOAc, were determiend as 94.2 \;mg/g (0.94%), 137.6 mg/g (1.38%) and 140.1 mg/g(1.40%) t-cinnamaldehyde in each extract, respectively, by using the above method.

A Study on the Evaluation of 3D Dose Distribution using Normoxic Polymer Gel (정상산소 중합체 겔 선량계를 이용한 3차원 방사선량 평가에 관한 연구)

  • Chung, Se-Young;Kim, Young-Bum;Kwon, Young-Ho;Lee, Suk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.7-17
    • /
    • 2007
  • Purpose: As increasing complexity of modern radiotherapy technique, more developing dosimetry is required. Polymer gel dosimeters offer a wide range of potential applications with high resolution and assured quality in the thee-dimensional verification of complex dose distribution such as intensity-modulated radiotherapy (IMRT). The purpose of this study is to find the most sensitive and suitable gel as a dosimeter by varying its composition ratio and its condition such as temperature during manufacturing. Materials and Methods: Each polymer gel with various ratio of composition was irradiated with the same amount of photon beam accordingly. Various polymer gels were analyzed and compared using a dedicated software written in visual C++ which converts TE images to R2 map images. Their sensitivities to the photon beam depending on their composition ratio were investigated. Results: There is no dependence on beam energy nor dose rate, and calibration curve is linear. Conclusion: The polymer gel dosimeter developed by using anti-oxidant in this study proved to be suitable for dosimetry.

  • PDF

Determination of Betaine in Fructus Lycii Using Hydrophilic Interaction Liquid Chromatography with Evaporative Light Scattering Detection

  • Shin, Hyun-Du;Suh, Joon-Hyuk;Kim, Jung-Hyun;Lee, Hye-Yeon;Eom, Han-Young;Kim, Un-Yong;Yang, Dong-Hyug;Han, Sang-Beom;Youm, Jeong-Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.553-558
    • /
    • 2012
  • A simple new method was developed for the determination of betaine in Fructus Lycii using hydrophilic interaction liquid chromatography with evaporative light scattering detection (HILIC-ELSD). Good chromatographic separation and reasonable betaine retention was achieved on a Kinetex HILIC column ($2.1{\times}100mm$, $2.6{\mu}m$) packed with fused-core particle. The mobile phase consisted of (A) acetonitrile and (B) 10 mM ammonium formate (pH 3.0)/acetonitrile (90/10, v/v). It was used with gradient elution at a flow rate of 0.7 mL/min. The column temperature was set at $27.5^{\circ}C$ and the injection volume was $10{\mu}L$. The ELSD drift tube temperature was $50^{\circ}C$ and the nebulizing gas (nitrogen) pressure was 3.0 bar. Stachydrine, a zwitterionic compound, was used as an internal standard. Calibration curve over $10-250{\mu}g/mL$ showed good linearity ($R^2$ > 0.9992) and betaine in the 70% methanol extract of Fructus Lycii was well separated from other peaks. Intraand inter-day precision ranged from 1.1 to 3.0% and from 2.4 to 5.3%, respectively, while intra- and inter-day accuracy ranged from 100.0 to 107.0% and from 94.3 to 103.9%, respectively. The limit of quantification (LOQ) was $10{\mu}g/mL$ and the recoveries were in the range of 98.2-102.7%. The developed HILIC-ELSD method was successfully applied to quantitatively determine the amount of betaine in fourteen Fructus Lycii samples from different locations, demonstrating that this method is simple, rapid, and suitable for the quality control of Fructus Lycii.

Analysis of Residual Solvents of [F-18]FDG Using Gas Chromatography (기체크로마토그래프법을 이용한 [F-18]FDG의 잔류용매 분석)

  • Kim, Dong-Il;Lee, Il-Jung;Kim, Shi-Hwal;Chi, Yong-Gi;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.26-29
    • /
    • 2011
  • Purpose: The general test method of the Korean Pharmacopeia specifies the test method on the clauses of quality control after manufacturing. According to KFDA Guidance for Medicines, standards of residual solvents regulates the maximum permissible dose of acetonitrile as 400 ppm, ethanol as 5,000 ppm, and acetic acid as 5,000 ppm. This study aims at identifying the type of resiual solvents in the final [F-18]FDG vial of an automatic synthesizer and measure its residual quantity. Materials and Methods: The center carried out residual solvents test of [F-18]FDG injection using Agilent Technologies 7890A with a Flame Ionization Detector. The column of Agilent Technologies 7890A used in measuring of residual solvents was CP WAX column ($30m{\times}0.53mm{\times}1.0{\mu}m$) and analysis condition was split mode 1:1 at the initial temperature $70^{\circ}C$ which was increased $20^{\circ}C/minute$ after two minutes and maintained at the final $140^{\circ}C$ for two minutes. The analysis method was as following: Firstly, ethanol-acetonitrile-acetic acid mixture was classified into four types of concentration (250-25-250 ppm, 1,000-100-1,000 ppm, 3,000-300-3,000 ppm, and 6,000-600-6,000 ppm), and $1.0{\mu}L$ of each type of concentration was injected into gas chromatography followed by an analysis of its peak domain. Then, a calibration-curve by the external standard method was drawn based on the analysis result. Results: While ethanol and acetonitrile were detected in TRACERlab MX, FASTlab had additional acetic acid. The residual quantity of the ethanol-acetonitrile-acetic acid mixture evaluated using the calibration-curve was average 72 ppm ethanol, 54 ppm acetonitrile, and 1030 ppm acetic acid for FASTlab, whereas average 439 ppm ethanol and 79 ppm acetonitrile for TRACERlab MX. This indicated that both of them were within the maximum permissible dose. Conclusion: Solvent residues in the [F-18]FDG injection were all within maximum permissible doses and proper to be used to examine a patient. The result indicated that types and quantities of solvent resides of radioactive pharmaceuticals vary depending on the automatic synthesizer.

  • PDF