• Title/Summary/Keyword: Tellurite glasses

Search Result 13, Processing Time 0.025 seconds

Chemical and Mechanical Sustainability of Silver Tellurite Glass Containing Radioactive Iodine-129

  • Lee, Cheong Won;Kang, Jaehyuk;Kwon, Yong Kon;Um, Wooyong;Heo, Jong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.3
    • /
    • pp.323-330
    • /
    • 2021
  • Silver tellurite glasses with melting temperature of approximately 700℃ were developed to immobilize 129I wastes. Long-term dissolution tests in 0.1 M acetic acid and disposability assessment were conducted to evaluate sustainability of the glasses. Leaching rate of Te, Bi and I from the glasses decreased for up to 16 d, then remained stable afterwards. On the contrary, tens to tens of thousands of times more of Ag was leached in comparison to the other elements; additionally, Ag leached continuously for all 128 d of the test owing to the exchange of Ag+ and H+ ions between the glasses and solution. The I leached much lower than those of other elements even though it leached ~10 times more in 0.1 M acetic acid than in deionized water. Some TeO4 units in the glass network were transformed to TeO3 by ion exchange and hydrolysis. These silver tellurite glasses met all waste acceptance criteria for disposal in Korea.

Bismuth modified gamma radiation shielding properties of titanium vanadium sodium tellurite glasses as a potent transparent radiation-resistant glass applications

  • Zaid, M.H.M.;Matori, K.A.;Sidek, H.A.A.;Ibrahim, I.R.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1323-1330
    • /
    • 2021
  • This work reported the radiation shielding characteristic of the bismuth titanium vanadium sodium tellurite glass system. The density of the specially-developed glass samples was increased from 2.21 to 4.01 g/cm3 with the addition of Bi2O3, despite the fact the molar volume is decease within 85.43-54.79 cm3/mol. The WinXcom program was used to approximate the effect of Bi2O3 on the gamma radiation shielding parameters of bismuth titanium vanadium sodium tellurite glasses. The ㎛ values decrease with the increase of Bi2O3 concentration. The computed data shows that the glass sample with 20 mol.% of Bi2O3 content has the greatest radiation attenuation performance in comparison to other selected glasses. The Bi2O3-TiO2-V2O5-Na2O-TeO2 glass system shows excellent neutron shielding material with high long-term light transmittance and discharge resistance and could be potentially used as transparent radiation-resistant shielding glass applications.

Effect of rare earth dopants on the radiation shielding properties of barium tellurite glasses

  • Vani, P.;Vinitha, G.;Sayyed, M.I.;AlShammari, Maha M.;Manikandan, N.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4106-4113
    • /
    • 2021
  • Rare earth doped barium tellurite glasses were synthesised and explored for their radiation shielding applications. All the samples showed good thermal stability with values varying between 101 ℃ and 135 ℃ based on dopants. Structural properties showed the dominance of matrix elements compared to rare earth dopants in forming the bridging and non-bridging atoms in the network. Bandgap values varied between 3.30 and 4.05 eV which was found to be monotonic with respective rare earth dopants indicating their modification effect in the network. Various radiation shielding parameters like linear attenuation coefficient, mean free path and half value layer were calculated and each showed the effect of doping. For all samples, LAC values decreased with increase in energy and is attributed to photoelectric mechanism. Thulium doped glasses showed the highest value of 1.18 cm-1 at 0.245 MeV for 2 mol.% doping, which decreased in the order of erbium, holmium and the base barium tellurite glass, while half value layer and mean free paths showed an opposite trend with least value for 2 mol.% thulium indicating that thulium doped samples are better attenuators compared to undoped and other rare earth doped samples. Studies indicate an increased level of thulium doping in barium tellurite glasses can lead to efficient shielding materials for high energy radiation.

Structural Modification of Alkali Tellurite Binary Glass System and Its Characterization

  • Lee, Kyu-Ho;Kim, Tae-Ho;Kim, Young-Seok;Jung, Young-Joon;Na, Young-Hoon;Ryu, Bong-Ki
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.235-240
    • /
    • 2008
  • This paper presents results and observations obtained from a study of the optical and thermal properties of alkali tellurite depending on the composition. Fourier transform infrared (FT-IR) spectra showed evidence of chemical modification from $TeO_4$ trigonal bipyramids (tbp) to $TeO_3$ trigonal pyramids (tp) in tellurite glasses. The optical band gaps of the different glass samples calculated using Tauc's method were found to range from 3.5-3.8 eV. The glass transition temperature (Tg) and glass stability (${\Delta}T$) of alkali tellurite glasses were investigated, as $M_2O$ [M: Li, Na, K] amounted to 25 mol%, through the use of differential thermal analysis (DTA). The coefficient of thermal expansion (CTE) was measured in a thermo mechanical analysis (TMA) with a slow heating rate after the glass samples were annealed. The results confirm that the optical band gap of alkali tellurite glasses depends on the Te-O-Te structural relaxation related to the ratio of bridging/non bridging oxygen (BO/NBO). In contrast, the thermal properties are related to the ionic field strength of the Te-O-M and M-O-M bonds, and the Te-O-Te breakage depends on the ratio of BO/NBO.

Effect of Thermal Poling on the 1.55 μm Emission Characteristics of Er3+-doped Glasses (Er3+ 첨가 유리의 1.55μm 형광특성에 미치는 Thermal Poling의 영향)

  • Lee, Tae-Hoon;Chung, Woon-Jin;Heo, Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.423-427
    • /
    • 2003
  • Effect of the thermal poling on the 1.55 fm emission spectra in various Er$^{3+}$ -doped glasses was investigated with a special attention on the changes in the values of FWHM(Full Width at Half Maximum) intensity. Tellurite glasses poled at 28$0^{\circ}C$ with an electric voltage of 4 kV resulted in an approximately 6% increase in FWHM values compared with their unpoled counterparts. On the other hand, values for glasses, such as aluminosilicate, sulfide and chalcohalide, either decreased or remained unchanged. The characteristic results from tellurite glasses are most probably due to the presence of lone-pair electrons in the TeO$_4$ hi-pyramidal units that form the main network structure of tellurite glasses.

An Investigation on the Crystal Growth Studies and Emission line shape in $Er^{3+}$-doped Sodium Tellurite Glasses

  • Joshi, Purushottam;Jha, Animesh
    • Ceramist
    • /
    • v.10 no.3
    • /
    • pp.67-74
    • /
    • 2007
  • Crystallisation kinetics of the erbium doped soda-tellurite glasses were studied using the differential thermal analysis (DTA) and differential scanning calorimetery (DSC) techniques. The DTA curves in the temperature range of 350 K to 650 K were obtained from isochronal heating rates, chosen in the range of 2 to 20 K/min. DSC isothermal curves were used to calculate the fraction of crystals formed on reheating. The apparent activation energies for devitrification were derived by measuring the shifts in the values of $T_g$ and $T_x$ with heating rates, using the Kissinger method. The derived values of apparent activation energies for isochronal and isothermal methods varied in the range of $190-204\;{\pm}\;5\;kJ\;mol^{-1}$. The X-ray powder diffraction analysis of heat treated and transparent samples showed the presence of nano-scale size sodium-tellurite crystals. These crystallites were found to have a strong influence on the full width of half maxima of the transition in $Er^{3+}:\;^4I_{13/2}{\rightarrow}^4I_{15/2}$, which extended from 70 nm in the vitreous materials to 132 nm in glass-ceramic materials.

  • PDF

The influence of MgO on the radiation protection and mechanical properties of tellurite glasses

  • Hanfi, M.Y.;Sayyed, M.I.;Lacomme, E.;Akkurt, I.;Mahmoud, K.A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2000-2010
    • /
    • 2021
  • Mechanical moduli, such as Young's modulus (E), Bulks modulus (B), Shear modulus (S), longitudinal modulus (L), Poisson's ratio (σ) and micro Hardness (H) were theoretically calculated for (100-x)TeO2+x MgO glasses, where x = 10, 20, 30, 40 and 45 mol%, based on the Makishima-Mackenzie model. The estimated results showed that the mechanical moduli and the microhardness of the glasses were improved with the increase of the MgO contents in the TM glasses, while Poisson's ratio decreased with the increase in MgO content. Moreover, the radiation shielding capacity was evaluated for the studied TM glasses. Thus, the linear attenuation coefficient (LAC), mass attenuation coefficient (MAC), transmission factor (TF) and half-value thickness (𝚫0.5) were simulated for gamma photon energies between 0.344 and 1.406 MeV. The simulated results showed that glass TM10 with 10 mol % MgO possess the highest LAC and varied in the range between 0.259 and 0.711 cm-1, while TM45 glass with 45 mol % MgO possess the lowest LAC and vary in the range between 0.223 and 0.587 cm-1 at gamma photon energies between 0.344 and 1.406 MeV. Furthermore, the BXCOM program was applied to calculate the effective atomic number (Zeff), equivalent atomic number (Zeq) and buildup factors (EBF and EABF) of the glasses. The effective removal cross-section for the fast neutrons (ERCSFN, ∑R) was also calculated theoretically. The received data depicts that the lowest ∑R was achieved for TM10 glasses, where ∑R = 0.0193 cm2 g-1, while TM45 possesses the highest ERCSFN where ∑R = 0.0215 cm2 g-1.

Improvement of $^{4}I_{11/2}{\to}^{4}I_{13/2}$ Transition Rate and Thermal Stabilities in $Er^{3+}-Doped\;TeO_2-B_2O_3\;(GeO_2)-ZnO-K_2O$ Glasses

  • Cho, Doo-Hee;Choi, Yong-Gyu;Kim, Kyong-Hon
    • ETRI Journal
    • /
    • v.23 no.4
    • /
    • pp.151-157
    • /
    • 2001
  • Spectroscopic and thermal analysis indicates that tellurite glasses doped with $B_2O_3$ and $GeO_2$ are promising candidate host materials for wide-band erbium doped fiber amplifier (EDFA) with a high 980 nm pump efficiency. In this study, we measured the thermal stabilities and the emission cross-sections for $Er^{3+}:^{4}I_{13/2}\;{\to}\;^{4}I_{15/2}$ transition in this tellurite glass system. We also determined the Judd-Ofelt parameters and calculated the radiative transition rates and the multiphonon relaxation rates in this glass system. The 15 mol% substitution of $B_2O_3$ for $TeO_2$ in the $Er^{3+}-doped\;75TeO_2-20ZnO-5K_2O$ glass raised the multiphonon relaxation rate for $^4I_{11/2}\;{\to}\;^4I_{13/2}$ transition from 4960 $s^{-1}$ to 24700 $s^{-1}$, but shortened the lifetime of the $^4I_{13/2}$ level by 14 % and reduced the emission cross-section for the $^4I_{13/2}\;{\to}\;^4I_{15/2}$ transition by 11%. The 15 mol% $GeO_2$ substitution in the same glass system also reduced the emission cross-section but increased the lifetime by 7%. However, the multiphonon relaxation rate for $^4I_{11/2}{\to}^4I_{13/2}$ transition was raised merely by 1000 $s^{-1}$. Therefore, a mixed substitution of $B_2O_3$ and $GeO_2$ for $TeO_2$ was concluded to be suitable for the 980 nm pump efficiency and the fluorescence efficiency of $^4I_{13/2}{\to}^4I_{15/2}$ transition in $Er^{3+}-doped$ tellurite glasses.

  • PDF

Gamma radiation attenuation properties of tellurite glasses: A comparative study

  • Al-Hadeethi, Y.;Sayyed, M.I.;Tijani, S.A.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.2005-2012
    • /
    • 2019
  • This work investigated the radiation attenuation characteristics of three series of tellurite glass systems with the following compositions: 30PbO-10ZnO-xTeO2-(60-x)B2O3 where x = 10, 30, 40, 50 and 60 mol%, xBaO-xB2O3-(100-2x)TeO2 with x = 15-40 mol% and 50ZnO-(50-x)P2O5-xTeO2, where x = 0, 10, .40 mol%. The results revealed that the attenuation parameters in all the samples decrease with increase in the energy, which implied that all the samples have better interaction with gamma photons at low energies and thus higher photon attenuating efficiency. From the three systems, the samples coded as PbZnBTe60, BaBTe70 and ZnPTe40 have the lowest half value layer values and accordingly have superior photon attenuation efficacy. The maximum effective atomic number values were found for energy less than 0.1 MeV particularly near the K-edges absorption of the heavy atomic number elements such as Te, Ba and Pb. At the lowest energy, the Zeff values are found in the range of 62.33-66.25, 49.43-50.81 and 24.99-35.83 for series 1-3 respectively. Also, we found that the density of the glass remarkably affects the photon attenuation ability of the selected glasses. The mean free path results showed that the PbO-ZnO-TeO2-B2O3 glass system has better radiation shielding efficiency than the glass samples in series 2 and 3.

A closer look at the structure and gamma-ray shielding properties of newly designed boro -tellurite glasses reinforced by bismuth (III) oxide

  • Hammam Abdurabu Thabit;Abd Khamim Ismail;N.N. Yusof;M.I. Sayyed;K.G. Mahmoud;I. Abdullahi;S. Hashim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1734-1741
    • /
    • 2023
  • This work presents the synthesis and preparation of a new glass system described by the equation of (70-x) B2O3-5TeO2 -20SrCO3-5ZnO -xBi2O3, x = 0, 1, 5, 10, and 15 mol. %, using the melt quenching technique at a melting temperature of 1100 ℃. The photon-shielding characteristics mainly the linear attenuation coefficient (LAC) of the prepared glass samples were evaluated using Monte Carlo (MC) simulation N-particle transport code (MCNP-5) at gamma-ray energy extended from 59 keV to 1408 keV emitted by the radioisotopes Am-241, Ba-133, Cs-137, Co-60, Na-22, and Eu-152. Furthermore, we observed that the Bi2O3 content of the glasses had a significantly stronger impact on the LAC at 59 and 356 keV. The study of the lead equivalent thickness shows that the performance of fabricated glass sample with 15 mol.% of Bi2O3 is four times less than the performance of pure lead at low gamma photon energy while it is enhanced and became two times lower the perforce of pure lead at high energy. Therefore, the fabricated glasses special sample with 15 mol.% of Bi2O3 has good shielding properties in low, intermediate, and high energy intervals.