• Title/Summary/Keyword: Telescoping

Search Result 30, Processing Time 0.019 seconds

Compamative Study of Tracheal Anastomotic Techniques. (기관 문합 수기의 비교 실험)

  • 송원영;이연재
    • Journal of Chest Surgery
    • /
    • v.30 no.12
    • /
    • pp.1219-1224
    • /
    • 1997
  • Although several reports were presented recently about bronchial arterial revascularization in clinical lung transplantation, one factor peculiar to the lung transplantation is the ischemia of the donor bronchus. Poor bronchial healing occurs frequently following clinical lung transplantation and this has been major cause of mortality and morbidity. There have been many attempts to solve bronchial anastomotic complications. Telescoping technique, one of those attempts, was advocated by San Antonio Group recently. This experiment was per(armed to evaluate the effect of telescoping anastomotic technique upon th healing of the tracheo-bronchial anastomosis. We used rabbits(weighing about 800 g) as experimental animal. Method: Resection of middle one third of cervical trachea and reanastomosis was performed by simple interrupted anastomotic technique in Group 1(n=15) and by telescoping anastomotic technique in Group 2(n= 15). Result: Anastomotic sites in the telescoping technique group showed significant increase of fibrosis in the early postoperative days(< Sdays) and remarkable band-like fibrous union compared to the simple interrupted group.

  • PDF

Analysis of Conceptual Models and State-of-the-Art Technologies for the Automation of Telescoping Work in Horizontal Tower Cranes (수평형 타워크레인 텔레스코핑 작업의 자동화를 위한 개념 모델 및 요소기술 분석)

  • Lee, Sang-Ho;Kim, Young-Suk;Lee, Jeong-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5D
    • /
    • pp.705-717
    • /
    • 2011
  • The number of horizontal tower cranes, major hoisting machineries for lifting approximately 50% of entire materials in construction projects, is rapidly increasing, but a number of accidents related to the tower cranes are being continuously occurred in construction sites as well. In particular, telescoping works in the horizontal tower cranes have showed the greatest safety concerns such as falls and collapses. It is due to the fact that tasks inserting a new mast in the space made after raising telescoping cage by fluid pressure and ascending it to the required height in the telescoping works include a series of dangerous factors in safety aspects, and might cause very serious and unexpected accidents in construction sites. The primary objective of this research is to propose two conceptual models for automating the telescoping work in horizontal tower crane and conduct their technical feasibility analyses. In this study, a design concept, a position control system using hydraulic cylinders is suggested as a better alternative for automating the telescoping work. Its potential safety improvement rate compared to the conventional method is also analyzed and presented in this study.

A Study on the Safety Risk of Telescoping Work of Tower Cranes (타워크레인 텔레스코핑 작업의 안전리스크 대응방안 연구)

  • Lee, Dong-Hoon;Choi, Jae-Hwi;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.9-13
    • /
    • 2009
  • As recent construction projects are bigger and higher, the importance of lifting is increasing. In construction sites tower cranes are an essential lifting equipment covering were than 50% of all construction activities. But due to neglect of safety supervision, tower crane-related accidents are frequently taking place. Since most of construction activities is done in heights, the accidents are more likely to be catastrophic. According to an analysis of the causes of tower crane-related accidents, 49% of all accidents claimed for certain periods($1999{\sim}2003$) occurred in the process of telescoping work. Therefore, this research is conducted with the object of analyzing telescoping work of tower cranes and presenting solutions against safety risk. It is expected that the results of this study can be used as useful basic data or material when preparing for effective safety management for tower cranes.

  • PDF

A Study on the Structural Safety of Tower Crane Telescoping Work according to Wind Speed and Load (타워크레인 텔레스코핑 작업의 풍속 및 하중에 대한 구조 안전성 연구)

  • Jung, Sung-Lyoung;Lee, Do-Geun;Paik, Shinwon;Shin, Sang-Yeon
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • This study analyses the load imbalance of the tower crane used in telescoping work for structural safety, owing to the difference in wind speed and balance weight position. This is because wind speed and position of the balance weight have a significant impact on the structural stresses of a tower crane during telescoping work. Therefore, structural analysis was performed on the 290HC model, which is often used at construction sites and has only one cylinder installed. Moreover, two models were classified to determine the load acting on the connecting part of the telescopic cage to slewing platform and the cylinder. Five types of balance weight positions were applied at regular intervals from jibs; moreover, four types of wind load criteria were differently applied. Hence, the telescopic cage columns were destroyed at all balance weight positions at a wind speed of 30 m/s and only at certain locations at a wind speed of 20 m/s. Furthermore, failures occurred for cylinders, torsional, and bending at wind speeds of 30 m/s and 20 m/s, load imbalances above the allowable thresholds considering the safety factor. In addition, the load imbalance in the telescoping work also varied depending on the position of the balance weights. The results of these studies have validated that the current standards of adjusting the appropriate position of the balance weights on the jib are completely valid, with the telescoping work to be executed only at wind speeds of less than equal to 10 m/s.

A Cryptography Algorithm using Telescoping Series (망원급수를 이용한 암호화 알고리즘)

  • Choi, Eun Jung;Sakong, Yung;Park, Wang Keun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.4
    • /
    • pp.103-110
    • /
    • 2013
  • In Information Technology era, various amazing IT technologies, for example Big Data, are appearing and are available as the amount of information increase. The number of counselling for violation of personal data protection is also increasing every year that it amounts to over 160,000 in 2012. According to Korean Privacy Act, in the case of treating unique personal identification information, appropriate measures like encipherment should be taken. The technologies of encipherment are the most basic countermeasures for personal data invasion and the base elements in information technology. So various cryptography algorithms exist and are used for encipherment technology. Therefore studies on safer new cryptography algorithms are executed. Cryptography algorithms started from classical replacement enciphering and developed to computationally secure code to increase complexity. Nowadays, various mathematic theories such as 'factorization into prime factor', 'extracting square root', 'discrete lognormal distribution', 'elliptical interaction curve' are adapted to cryptography algorithms. RSA public key cryptography algorithm which was based on 'factorization into prime factor' is the most representative one. This paper suggests algorithm utilizing telescoping series as a safer cryptography algorithm which can maximize the complexity. Telescoping series is a type of infinite series which can generate various types of function for given value-the plain text. Among these generated functions, one can be selected as a original equation. Some part of this equation can be defined as a key. And then the original equation can be transformed into final equation by improving the complexity of original equation through the command of "FullSimplify" of "Mathematica" software.

A Study on Inertia Sensor System for Nano Electronic Device (나노전자소자로서의 관성센서 시스템에 관한 연구)

  • Lee, Jun-Ha
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.21-24
    • /
    • 2009
  • We investigated a nanoscale inertia sensor based on telescoping carbon nanotubes, using classical molecular dynamics simulations. The position of the telescoping nanotubes is controlled by the centrifugal force exerted by the rotation platform, thus, position shifts are determined by the capacitance between carbon nanotubes and the electrode, and the operating frequency of the carbon nanotube oscillator. This measurement system, tracking oscillations of the carbon nanotube oscillator, can be used as the sensor for numerous types of devices, such as motion detectors, accelerometers and acoustic sensors.

  • PDF

A Study on the Vibration Analysis of an Automobile Steering System (승용차 스티어링 칼럼 시스템의 진동해석에 관한 연구)

  • 김찬묵;김도연
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.494-503
    • /
    • 1998
  • In this paper, in order to analyze dynamic characteristics of an automobile steering system consisting of many components, natural frequencies and transfer functions of each component and the total system are found on a FFT analyzer by experiments. Then, the data are transmitted to a commercial package program, CADA-PC. By analyzing the data, the mode shape of each natural frequency and damping values are obtained. Also, the function of a rubber coupling in column and telescoping effects on system are considered. C.A.E commercial programs are used to compare with the results of experiments. For the finite element modeling, I-DEAS is used. Data processing and post processing are operated on NASTRAN and XL, respectively. The ball-bearing and the linkage of shaft with column are modeled by spring element. Stiffness is modified from the results of experiments. The results of those show close agreement. In the mode shape of total system, wheel mode is dominant at lower frequency, while the column mode is main mode at higher. The role of rubber coupling in vibration isolation is clear on mode shape. Telescoping function makes natural frequency of column changed.

  • PDF

One-dimensional Schottky nanodiode based on telescoping polyprismanes

  • Sergeyev, Daulet
    • Advances in nano research
    • /
    • v.10 no.4
    • /
    • pp.339-347
    • /
    • 2021
  • In the framework of the density functional theory combined with the method of non-equilibrium Green functions (DFT + NEGF), the electric transport properties of a one-dimensional nanodevice consisting of telescoping polyprismanes with various types of electrical conductivity were studied. Its transmission spectra, density of state, current-voltage characteristic, and differential conductivity are determined. It was shown that C[14,17], C[14,11], C[14,16], C[14,10] show a metallic nature, and polyprismanes C[14,5], C[14,4] possess semiconductor properties and has a band gap of 0.4 eV and 0.6 eV, respectively. It was found that, when metal C[14,11], C[14,10] and semiconductor C[14,5], C[14,4] polyprismanes are coaxially connected, a Schottky barrier is formed and a weak diode effect is observed, i.e., manifested valve (rectifying) property of telescoping polyprismanes. The enhancement of this effect occurs in the nanodevices C[14,17] - C[14,11] - C[14,5] and C[14,16] - C[14,10] - C[14,4], which have the properties of nanodiode and back nanodiode, respectively. The simulation results can be useful in creating promising active one-dimensional elements of nanoelectronics.