• Title/Summary/Keyword: Telegrapher′s Equations

Search Result 5, Processing Time 0.019 seconds

On the Limitation of Telegrapher′s Equations for Analysis of Nonuniform Transmission Lines

  • Kim, Se-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.2
    • /
    • pp.68-71
    • /
    • 2004
  • The limitation of telegrapher's equations for analysis of nonuniform transmission lines is investigated here. It is shown theoretically that the input impedance of a nonuniform transmission line cannot be derived uniquely from the Riccati equation only except for the exponential transmission line of a particular frequency-dependent taper. As an example, the input impedance of an angled two-plate transmission line is calculated by solving the telegrapher's equations numerically. The numerical results suffer from larger deviation from its rigorous solution as the plate angle increases.

Prediction of Noise in a Transmission Line Excited by an Electric Dipole (전기다이폴에 의해 유기되는 전송선로의 노이즈 예측)

  • Kim, Eunha;Lee, Jae-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.5
    • /
    • pp.391-399
    • /
    • 2017
  • At present the general trend of modern electronics is toward smaller packages and high performance. As an antenna requires high powers, the EMC(Electromagnetic Compatibility) problems of the transmission line stage is becoming crucial day by day. In this paper, a transmission line excited by the electromagnetic fields from an infinitesimal electric dipole antenna is analyzed using the modified telegrapher's equations. The analytical equations are derived for arbitrarily positioned electric dipole with reference to a transmission line. To verify our approach, the induced voltage and current at the terminal were computed by the proposed approach and compared with those obtained by the electromagnetic simulation solver. Furthermore, the induced currents at the terminal of a transmission line excited by the electric dipoles at various positions were investigated using our approach.

Closed-Form Time Domain Solutions for Multiconductor TEM Lines (TEM 다중 전송 선로에 대한 Closed-Form 형태의 시간 영역 해석)

  • Jeong, Jae-Hoon;Hong, Ic-Pyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.6 s.121
    • /
    • pp.680-688
    • /
    • 2007
  • Time domain closed-form analytical solutions to the coupled telegrapher's equations for the voltage and current on a lossless multiconductor transmission line are presented. The resulting expressions are obtained in the form of exact time domain propagators operating on the line voltage and current. Time domain numerical methods are developed and examples showing exceptionally accurate results are obtained for uniform and nonuniform; symmetric and asymmetric strip lines.

Slender piezoelectric beams with resistive-inductive electrodes - modeling and axial wave propagation

  • Schoeftner, Juergen;Buchberger, Gerda;Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.335-354
    • /
    • 2016
  • This contribution presents an extended one-dimensional theory for piezoelectric beam-type structures with non-ideal electrodes. For these types of electrodes the equipotential area condition is not satisfied. The main motivation of our research is originated from passive vibration control: when an elastic structure is covered by several piezoelectric patches that are linked via resistances and inductances, vibrational energy is efficiently dissipated if the electric network is properly designed. Assuming infinitely small piezoelectric patches that are connected by an infinite number of electrical, in particular resistive and inductive elements, one obtains the Telegrapher's equation for the voltage across the piezoelectric transducer. Embedding this outcome into the framework of Bernoulli-Euler, the final equations are coupled to the wave equations for the longitudinal motion of a bar and to the partial differential equations for the lateral motion of the beam. We present results for the wave propagation of a longitudinal bar for several types of electrode properties. The frequency spectra are computed (phase angle, wave number, wave speed), which point out the effect of resistive and inductive electrodes on wave characteristics. Our results show that electrical damping due to the resistivity of the electrodes is different from internal (=strain velocity dependent) or external (=velocity dependent) mechanical damping. Finally, results are presented, when the structure is excited by a harmonic single force, yielding that resistive-inductive electrodes are suitable candidates for passive vibration control that might be of great interest for practical applications in the future.

Transverse dynamics of slender piezoelectric bimorphs with resistive-inductive electrodes

  • Schoeftner, Juergen;Buchberger, Gerda;Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.355-374
    • /
    • 2016
  • This paper presents and compares a one-dimensional (1D) bending theory for piezoelectric thin beam-type structures with resistive-inductive electrodes to ANSYS$^{(R)}$ three-dimensional (3D) finite element (FE) analysis. In particular, the lateral deflections and vibrations of slender piezoelectric beams are considered. The peculiarity of the piezoelectric beam model is the modeling of electrodes in such a manner that is does not fulfill the equipotential area condition. The case of ideal, perfectly conductive electrodes is a special case of our 1D model. Two-coupled partial differential equations are obtained for the lateral deflection and for the voltage distribution along the electrodes: the first one is an extended Bernoulli-Euler beam equation (second-order in time, forth order in space) and the second one the so-called Telegrapher's equation (second-order in time and space). Analytical results of our theory are validated by 3D electromechanically coupled FE simulations with ANSYS$^{(R)}$. A clamped-hinged beam is considered with various types of electrodes for the piezoelectric layers, which can be either resistive and/or inductive. A natural frequency analysis as well as quasi-static and dynamic simulations are performed. A good agreement between the extended beam theory and the FE results is found. Finally, the practical relevance of this type of electrodes is shown. It is found that the damping capability of properly tuned resistive or resistive-inductive electrodes exceeds the damping performance of beams, where the electrodes are simply linked to an optimized impedance.