• Title/Summary/Keyword: Telecommunication band

Search Result 336, Processing Time 0.027 seconds

Compact Antenna Design for the UWB Lower Half-Band WVAN Gbps Data-Rate Transceiver (UWB 하반 대역 WVAN Gbps 데이터 전송률 트랜시버용 소형 광대역 안테나의 설계)

  • Eom, Da-Jeong;Lim, Dong-Jin;Kahng, Sung-Tek;Lee, Seung-Sik;Choi, Sang-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.283-291
    • /
    • 2012
  • In this paper, a compact antenna is designed for the UWB lower half-band WVAN Gbps data-rate transceiver. The proposed antenna broadens the bandwidth less than -10 dB by placing the ring stubs and an open stub on the rectangular monopole above the partial ground and creating multiple resonant current paths. The designed antenna goes through the electromagnetic simulation and is fabricated and the implemented antenna has the characteristics of the return loss lower than -10 dB, the antenna gain greater than 5 dBi, and the efficiency over 80 % in the UWB lower half-band ranging from 3.197 GHz to 4.732 GHz. Therefore, it is thought that the proposed antenna is suitable for the size-reduced and excellently performing wireless communication transceiver.

Design of TX/RX broadband L-type circular polarization Antenna using LTCC at K/Kaband (LTCC 공정을 이용한 K/Ka 대역에서의 송수신 겸용 L 형태 원형편파 안테나)

  • Oh, Min-Seok;Cheon, Young-Min;Kim, Sung-Nam;Choi, Jae-Ick;Pyo, Cheol-Sig;Lee, Jong-Moon;Cheon, Chang-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2052-2054
    • /
    • 2004
  • The TX/RX broadband L-type circular polarization antenna using LTCC at K/Ka band has been presented. This antenna has been analyzed in compensation for LTCC with relative permittivity 5.2 and could have been integrated with RF component. As the measured 10dB impedance circular polarization bandwidth of the proposed antenna is 7%(20.8GHz${\sim}$22.2GHz) at the K band and 2.3%(30.9GHz to 31.6GHz) at the Ka band. Also the gain of the antenna is -0.7${\sim}$3.05dBi at the K band and -2.8${\sim}$1dBi at the Ka band. The purpose of the research is to design an efficient antenna structure for satellite communication at K/Ka band. the antenna should be used for both TX and RX frequency bands. The antenna will be mounted on LTCC(Low Temperature Co-fired Ceramic) so that it can be integrated with other RF circuits. This research is important because of the following reasons. 1) The frequency ranges of satellite communication tends to move up to higher frequency such as Ka band or milimeter wave band. 2) Design of antenna for smaller size, lighter weight and less loss is preferred by most RF engineers. 3) Antennas on LTCC enables to integrate the antenna with other RF circuits, and thus, one can reduce the size and loss of the RF system.

  • PDF

Design of Ultra Wide Bandpass Filter by Metamaterial for KSTAR Reflectometry (KSTAR (Korea Superconducting Tokamak Advanced Research)용 Reflectometry를 위한 메타전자파 구조 광대역 대역 통과 여파기 설계)

  • Lee, Chong-Min;Sim, Woo-Seok;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.1
    • /
    • pp.73-77
    • /
    • 2012
  • In this article, we designed a wide bandpass filter in order to apply microwave reflectometry for KSTAR. The proposed wide bandpass filter consists of a metamaterial structure which is to get a wide band, a lower insertion loss, and a high skirt. This is applied to VCO's output to enhance the linearity. A pass band is 18-28 GHz and the out of pass band is stopped over 20 dB. To confirm of the metamaterial, we suggest a dispersion diagram. The proposed filter in lower band and upper band of pass band is respectively a left handed and right handed characteristics. A group delay is below 0.5 ns.

Dual-band Open Loop Antenna using Strip-conductor for the RFID and Wireless LAN Application (RFID 및 무선 LAN용 이중대역 도체스트립 개방루프 안테나)

  • Lim, Jung-Hyun;Kang, Bong-Soo;Kim, Heung-Soo;Jwa, Jeong-Woo;Yang, Doo-Yeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.3 s.357
    • /
    • pp.98-104
    • /
    • 2007
  • In this paper, the dual-band open loop antenna using a strip conductor for the RFID reader and Wireless LAN Application, which has a resonant frequency at 910MHz and 2.45 GHz, is proposed. Input impedance of antenna is matched with the feed line of 50 ohm by varying the length and width of sip conductor making up the antenna. The gain and directivity of antenna is enhanced as tuning the length of strip, and as also grooving the teeth shapes on the strip conductor. The size of fabricated antenna is $75mm\times100mm$. The return loss and the gain of fabricated antenna are -11.92 dB, 3.02 dBi at 910 MHz and -21.31 dB, 4.08 dBi at 2.45 GHz, respectively.

A Tone Dual-Channel DMAC Protocol in Location Aware Ad Hoc Networks (위치 정보 기반의 Ad hoc 네트워크에서 Tone 을 사용한 Dual-Channel DMAC 프로토콜)

  • Lee, Eun-Ju;Han, Do-Hyung;Jwa, Jeong-Woo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.57-58
    • /
    • 2006
  • Ad hoc MAC protocols using directional antennas can be used to improve the network capacity by improving spatial reuse. But, the directional MAC protocols have the problem of deafness and have a poor throughput performance. The dual-channel DMAC protocol has been proposed to mitigate deafness and improve spatial reuse. In this paper, we propose a dual-channel DMAC protocol using the omnidirectional antenna for an out-of-band tone and directional antennas for control/data channels. In the proposed MAC protocol, an omnidirectional out-of-band tone mitigates deafness and directional antennas used in control/data channels improve spatial reuse and reduce interference packets. The throughput performance of the proposed MAC protocol is confirmed by computer simulations using Qualnet ver. 3.8 simulator.

  • PDF

GA-Optimized Compact Broadband CRLH Band-Pass Filter Using Stub-Inserted Interdigital Coupled Lines

  • Jeon, Jinsu;Kahng, Sungtek;Kim, Hyunsoo
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.1
    • /
    • pp.31-36
    • /
    • 2015
  • The design of a new compact band-pass filter is proposed, which is based on the microstrip composite right- and left-handed transmission- line (CRLH-TL) structure. Particularly, the interdigital coupled (IDC) lines of the CRLH geometry are proposed to be parted by inserting open stubs to meet the specifications on the passband. In addition, there is another pair of stubs to complete the design in a limited space. These are considered in the TL-based analysis and the design parameters are calculated by genetic algorithm optimization. The measurement is shown to be acceptable and agreeable with the circuit and electromagnetic field simulations. In addition, the zerothorder resonance (ZOR) phenomenon is verified.

Compact Dual-Band Three-Way Metamaterial Power-Divider with a Hybrid CRLH Phase-Shift Line

  • Jang, Kyeongnam;Kahng, Sungtek;Jeon, Jinsu;Wu, Qun
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.1
    • /
    • pp.15-24
    • /
    • 2014
  • A compact dual-band three-way metamaterial power divider is proposed that has three in-phase outputs. Fully printed composite rightand left-handed (CRLH) unequal and equal power dividers are first implemented for 900-MHz and 2.4-GHz bands with the power-division ratios of 2:1 and 1:1, respectively. An initial 1:1:1 power divider is then achieved by incorporating the input of the two-way equal block into an output of the unequal block, and trimming the interconnection parameters. The condition of an identical phase at the three outputs of the power divider is then met by devising a hybrid CRLH phase-shift line to compensate for the different phase errors at the two frequencies. This scheme is confirmed by predicting the performance of the power divider with circuit analysis and full-wave simulation and measuring the fabricated prototype. They results show agreement; the in-phase outputs as well as the desirable power-division are accomplished and outdo the conventional techniques.

Design of Improved U-Slotted Patch Antennas with EBG Ground Plane (EBG(Electromagnetic Band-Gap) 접지면을 갖는 개선된 U-Slotted 패치 안테나의 설계)

  • Park, Jong-Hwan;Lim, Seong-Bin;Choi, Hak-Keun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.304-310
    • /
    • 2008
  • Generally U-slotted patch antenna with PEC(Perfect Electric Conductor) ground plane is used for mobile telecommunication. However the improvement of the bandwidth is required to enlarge the capability of mobile telecommunication, In this paper, U-slotted patch antenna with EBG(Electromagnetic Band-Gap) ground plane is proposed to enlarge thr bandwidth and its radiation characteristics are investigated. To conform the bandwidth improvement, two kinds of U-slotted patch antennas with EBG and PEC ground plane are designed, fabricated, and radiation characteristics are measured. It is shown that the proposed antenna is wider than U-slotted patch antenna with PEC ground plane in bandwidth.

K-Band Low Phase Noise Push Push OSC Using Metamaterial Resonator (Metamatrial Resonator를 이용한 K-Band 저위상 잡음 Push Push OSC 설계)

  • Shim, Woo-Seok;Lee, Jong-Min;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.2
    • /
    • pp.67-71
    • /
    • 2012
  • In this paper, a push-push oscillator at K-band with a double H-shape metamaterial resonator (DHMR) based on high-Q is proposed with metamaterial structure to improve the phase noise and output power. The proposed oscillator shows low phase noise and high output power. DHMR is designed to be high-Q at resonance frequency through strong coupling of E-field. oscillators which are combined in push-push structure improve output power. The propose push-push oscillator shows the output power of 3.1 dBm, the fundamental signal suppression of -23.7 dBc and phase noise of -116.28 dBc at 100 kHz offset frequency and 20.20 GHz center frequency.