• Title/Summary/Keyword: Tedlar gas sampling bag

Search Result 7, Processing Time 0.021 seconds

An Effective Block of Radioactive Gases for the Storage During the Synthesis of Radiopharmaceutical (방사성의약품 합성에서 발생하는 방사성기체의 효율적 차단)

  • Chi, Yong Gi;Kim, Dong Il;Kim, Si Hwal;Won, Moon Hee;Choe, Seong-Uk;Choi, Choon Ki;Seok, Jae Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.126-130
    • /
    • 2012
  • Purpose : Methode an effective block was investigated to deal with volatile radioactive gas, short lived radioactive waste generated as a result of the routinely produced radiopharmaceuticals FDG (2-deoxy-2-[$^{18}F$]fluoro-D-glucose) and compound with $^{11}C$. Materials and Methods : All components of the radiation stack monitoring and data management system for continuous radioactive gas detection in the air extract system purchase from fixed noble gas monitor of Berthold company. TEDLAR gas sampling bags purchase from the Dongbanghitech company. TEDLAR gas sampling bags (volume: 10 L) connected via paraflex or PTFE tubing and Teflon 3 way stopcock. When installing TEDLAR gas sampling bags in Hot cell on the inside and not radioactive gas concentrations were compared. According to whether the Hot cell inside a activated carbon filter installed, compare the difference in concentration of the radioactive gas $^{18}F$. Comparison of radiation emission concentration difference of module a FASTlab and TRACElab. Results : Activated carbon filter are installed in the Hot cell, a measure of the concentration of radioactive gas was 8 $Bq/m^3$. Without activated carbone filter in the hot cell was 300 $Bq/m^3$. Tedlar bag prior to installation of the radioactive gases a measure of the concentration was 3,500 $Bq/m^3$, $^{11}C$ synthesis of the measured concentration was 27,000 $Bq/m^3$. After installed a Tedlar bag and a measure concentration of the radioactive gases was 300 $Bq/m^3$ and $^{11}C$ synthesis was 1,000$Bq/m^3$. Conclusion : $^{11}C$ radioactive gas that was ejected out of the Hot cell, with the use of a Tedlar gas sampling bag stored inside. A compound of 11C is not absorbed onto activated carbon filter. But can block the release out by storing in a Tedlar gas sampling bag. We was able to reduce the radiation exposure of the worker by efficient radiation protection.

  • PDF

Measurement of Volatile Organic Sulfur Compounds in Ambient Air by Canister and Tedlar-bag Sampling Method (캐니스터와 Tedlar-bag 시료채집법을 이용한 대기 중의 휘발성유기황화합물의 측정)

  • 전선주;허귀석
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.4
    • /
    • pp.417-428
    • /
    • 1999
  • The measurement of VOSCs(volatile organic sulfur compounds) in the air is nowadays a very important environmental research field. It is, however, very difficult because the concentration of the VOSC in ambient air is usually very low and the high reactivity makes it difficult to keep in container without loss of recovery. In this study, sampling method with cryogenic preconcentration is evaluated for analysis of atmospheric VOSC such as $CH_3SH,\;CH_3CH_2SH,\;CH_3SCH_3,\;CS_2,\;CH_3SSCH_3,\;CH_3SCH_2SCHA_3,\;and\;C_2H_5SSC_2H_5$ analyzed by GC-MS or GC-FID. Repeatabilities of measurement accompanied with preconcentration for 3-successive runs were in the range of 0.2~1.0% as a relative standard deviation. Stabilities up to 13 days were measured in 6 L canister and 10 L tedlar bag filled with VOSCs in ppb level. Higher stability was observed in tedlar bag as compared to canister with glass coated inner walls, and thiol compounds show dramatic losses in canister within 2~3 days. It is found that recovery over 70% was obtained in a week for all tested VOSCs when the compounds from ambient air matrix were stored in tedlar bag. It is also found that the stabilities of VOSCs are depending on humidity and coexisting compounds in matrix gas due to sample adsorption onto inner surface and reactivity. The results indicate the possibility and limitations of VOSC analysis in ambient air using container sampling method with cryogenic preconcentration.

  • PDF

Temporal Variability of N2O Gas Concentration Collected in Tedlar Bag (테들러백에서 N2O농도의 시간적 변동성 연구)

  • Hong, Yoonjung;Kang, Seongmin;Cho, Changsang;Yun, Hyun-Ki;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.9 no.1
    • /
    • pp.59-67
    • /
    • 2018
  • In this study, the $N_2O$, emitted from combustion facility, were analyzed by using simulated gas and field samples to find out how long samples can be stored in Tedlar bag. According to the results of the experiment using simulated gases (1 ppm, 5 ppm, 10 ppm) in Tedlar bag, After 144hr, $N_2O$ concentration of simulated gases changed that 1 ppm is 5.3%, 5 ppm is 12.8%, and 10ppm is 10.5%. The higher initial concentration of simulated gas was, the larger rate of $N_2O$ concentration was changed. In case of high concentration samples, it need to be careful when it was analyzed after 144 hr. Stability evaluation in Tedlar bag was carried out through field samples such as combustion facility of bituminous coal, B-C oil and LNG. The concentration rate of field samples, which is under 1 ppm of average initial concentration, was evaluated using statistical method. As a result, $N_2O$ concentrations were changed to field samples in the bag even when 96 hr had passed. And after sampling, it is necessary that sample analysis should be quickly as soon as possible.

Some Insights into the Basic QA/QC for the Greenhouse Gas Analysis: Methane and Carbon Dioxide (온실가스 기기분석의 정도관리를 위한 고려사항 연구 - CH4과 CO2를 중심으로 -)

  • Jeong, Jae-Hak;Lim, Ho-Soo;Kim, Ki-Hyun;Bae, Wi-Sup;Jeon, Eui-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.712-718
    • /
    • 2006
  • In order to investigate the analytical uncertainties associated with sampling and analysis of major greenhouse gaseous pollutants(carbon dioxide and methane), we attempted to quantify their adsorptive loss due to the contact with the container wall(such as Tedlar bag and vial). Using the GC/FID method, some basic experimental parameters(such as reproducibility and method detection limit) have been evaluated as part of the essential QA/QC The reproducibilities of carbon dioxide and methane were estimated as 2.02 and 0.2%, respectively. In addition, method detection limits were measured as 0.61 and 0.06 ng, respectively. A test of sample loss rate has also been made for Tedlar bag and vial by assessing the absolute amount of sample loss on the wall. By transferring the samples contained in Tedlar bag to various sizes of Tedlar bags, we measured differences in the absolute loss quantity due to such transfer. In addition, we also examined such loss mechanism as a function of elapsed time and light penetration rate for vial. As results, carbon dioxide and methane have shown about 2% of sample loss due to such contact. It is also noticed that the amount of loss with vial surface is lower than that of Tedlar bag. Therefore, field collection of greenhouse gases using various container types should be made more cautiously to minimize the possibility of sample loss and bias related to such loss.

Reduced sulfur gas loss in the bag sampling procedure - Comparison by calibration slope values (악취황 성분의 채취와 샘플백 내부의 시료 유실율 비교: 검량선의 기울기를 이용한 평가)

  • Kim, K.H.;Choi, Y.J.;Ahn, J.W.
    • Analytical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.338-343
    • /
    • 2005
  • In this work, sample loss of reduced sulfur compounds (RSC) was investigated with respect to bag sampling techniques. For comparison purpose, calibration slopes were obtained by analyzing standards prepared by 'within syringe dilution' (WSD) method against those made either by 'Tedlar bag dilution' (TBD) or by 'polyester aluminum bag dilution' (PBD) method. The results indicated that the recovery rate of TBD showed the mean values of about 87%, while those of PBD about 77%. Despite the fact that sample loss is inevitable, precise sampling of reduced sulfur compounds may still be possible, if one acknowledges and be prepared for such loss rates of bag sampling methods.

Temporal Variability of CH4 Gas Concentration Collected in Sampling Bag (온실가스 시료 보관시간에 따른 CH4 농도 변화)

  • Hong, Yoonjung;Cho, Changsang;Kang, Seongmin;Yun, Hyun-Ki;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.477-484
    • /
    • 2016
  • In general, $CH_4$ concentrations generated in combustion facilities are known to be ppm units. In most cases, $CH_4$ samples are collected in Tedlar bags and transported to laboratories for analysis. Considering this fact, in the present study, an attempt was made to find out how long samples can be stored in cases where they are kept in bags and transported as a preliminary study for sampling. According to the results of the experiment using simulated gases (1 ppm, 5 ppm, 10 ppm) in Tedlar bag, $CH_4$ was safe up to 240 hr which is the full time. In the case of simulated gases are containing 4 kind gases ($N_2$, $CO_2$, $CH_4$, and $N_2O$). Field samples (samples of obtained by collecting combustion facilities' exhaust gases) are known to contain highly reactive substances (for example NOx, SOx, and VOCs) and may affect each other. In the present study, one site sample was secured from each of a bituminous coal combustion facility and an LNG combustion facility and whether the concentrations of $CH_4$ gas would change over time (24 hr, 96 hr, 144 hr, 192 hr) was checked. Since site samples could not be analyzed on the day of collection, an experiment was started 24 hr after the time point of sampling to analyze the samples. As with the results of analysis of the simulated gas (240 hr), the results of analysis using the site sample indicated that it could be stored for the full study period 192 hr. Therefore, it was judged that if 192 hr would be taken after sampling before the sample would be analyzed, the concentration value should be reliable.

Emission Rates of Biogenic Volatile Organic Compounds from Various Tree Species in Korea (II): Major Species in Urban Forests (국내 수종별 BVOCs 방출량(II): 도시 숲 주요 수종)

  • Hanna, Chang;Jounga, Son;Juwan, Kim;Junhyuk, Kim;Yeongseong, Kim;Won-Sil, Choi;Young-Kyu, Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.490-501
    • /
    • 2022
  • In this study, the isoprene and terpene emissions from 32 major urban tree species were investigated. We conducted sampling using a dynamic enclosure system between June and July 2021. Seedlings aged < three years were enclosed in a chamber consisting of a 400 L transparent Tedlar bag. The air flow from the outlet of the chamber was sampled using Tenax-filled sorbent tubes under standard conditions (temperature: 30°C; PAR: 1,000 μmol/m2/sec). A thermal desorption gas chromatography/mass spectrometry system was used to analyze the following 38 biogenic volatile organic compounds: isoprene, monoterpenes, sesquiterpenes, oxygenated monoterpenes, and oxygenated sesquiterpenes. Isoprene emitters included Quercus mongolica, Salix koreensis, Robinia pseudoacacia, and Salix chaenomeloides. Monoterpene emitters included Pinus strobus, Cedrela sinensis, and Cercis chinensis. The monoterpene emission profiles were dominated by á-pinene, myrcene, camphene, and limonene. The predominant oxygenated monoterpene and oxygenated sesquiterpene were eucalyptol and caryophyllene oxide, respectively. For all species, the contributions of sesquiterpenes and oxygenated sesquiterpenes were relatively low.