• Title/Summary/Keyword: Tectonic movement

Search Result 86, Processing Time 0.028 seconds

Tectonic Movement in the Korean Peninsula (II): A Geomorphological Interpretation of the Spatial Distribution of Earthquakes (한반도의 지반운동 (II): 한반도 지진분포의 지형학적 해석)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.4
    • /
    • pp.488-505
    • /
    • 2007
  • The purposes of this research are twofold; 1) to verify spatial differences of tectonic movement using the spatial distribution of earthquakes, and 2) to infer mechanisms that generate spatial accumulation patterns of earthquakes in the Korean Peninsula. The first part of this sequential paper (Park, 2007) argues that the Korean Peninsula consists of four geostructural regions in which tectonic deformation and consequent geomorphological development patterns are different from each other Since this conclusion has been made by terrain analyses alone, it is necessary to verify this suggestion using other independent geophysical data. Because earthquakes are results of movement and deformation of land masses moving in different directions, the distribution of earthquake epicenters may be used to identify the direction and rates of land mass movement. This paper first analysed the spatial distribution of earthquakes using spatial statistics, and then results were compared with the spatial arrangement of geostructural regions. The spatial distribution of earthquakes in the Korean Peninsula can be summarized as the followings; firstly, the intensity of earthquakes shows only weak spatial dependency, and shows large difference even at adjacent regions. Secondly, the epicenter distribution has a clear spatial accumulation pattern, even though the intensity of earthquake shows a random pattern. Thirdly, the high density area of earthquakes shows a clear 'L' shape, passing through Pyeongannam-do, centered at Pyeongyang, and Hwanghae-do, Seosan and Pohang. The correlation coefficient between the density of earthquakes and distance from geostructral region boundaries is much higher than those between the density of fault lines and distance from tectonic division boundaries. Since fault lines and tectonic divisions in the Korean Peninsula are the results of long-term geological development, there is an apparent scale discrepancy to find significant correlations with earthquakes. This result verifies the research hypothesis that the Korean Peninsula is divided into four geostructral regions in which each has its own moving direction and spatial deformation characteristics. The existence of geostructural regions is also supported by the movement parrerns of land masses estimated from the GPS measurements. This conclusion is expected to provide a new perspective to understand the geomorphological developments and the earthquake occurrences in the Korean Peninsula.

Magnetic Anisotropy and Tectonic Stress Field of Tertiary Rocks in Pohang-Ulsan area, Korea (포항이남 제3기분지암석의 자기 비등방성과 지구조적 응력장)

  • Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.23 no.1
    • /
    • pp.59-71
    • /
    • 1990
  • Magnetic anisotropy of a total of 213 independently oriented Tertiary rock samples from Pohang-Ulsan area has been studied. The sampled strata comprise basalts, tuffs and black shale, and range in age from Eocene to Miocene. The previous palaeomagnetic studies indicate that their magnetic carrier minerals are titanomagnetites. Among 23 sampled sites, 11 sites were found to preserve magnetic load foliation parallel to the bedding plane caused by the Iithostatic load of the overlying strata. Other 4 sites showed magnetic lineation indicating the flow direction of lava and tuffs. The remaining 8 sites revealed the magnetic tectonic foliation nearly vertical to the bedding plane. This magnetic foliation is interpreted to be generated by tectonic compression which acted nearly horizontally during the solidification stage of the strata. The compression directions deduced from the tectonic foliation of the 8 sites can be grouped into internally very consistent two group: a N-S trending one and the other WNW-ESE trending one. It is interpreted that the former N-S compression was associated with the N-S spreading of the East Sea(Sea of Japan) and the dextral strike-slip movement of the Yangsan-Ulsan fault system. The latter WNW-ESE compression is interpreted to represent the folding and reverse faulting activity in the Korean and Tsushima straits during middle/late Miocene times.

  • PDF

Influence of Tectonic Uplift on Longitudinal Profiles of Bedrock Rivers: Numerical Simulations (융기가 기반암 하상하천의 종단곡선에 미치는 영향에 대한 연구 -수리 모형을 통한 연구-)

  • Kim Jong Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.722-734
    • /
    • 2004
  • Longitudinal profiles of bedrock rivers play a fundamental role in landscape history by setting the boundary conditions for landform evolution. Longitudinal profiles are changed with climatic conditions, lithology and tectonic movements. Tectonic movement is an important factor controlling longitudinal profiles, especially in tectonically active area where uplift rates are regarded as a major factor controlling channel gradient. However study on bedrock channel has made little progress, because controls over bedrock river incision are yet to be clarified. Previous numerical simulations have used a simple diffusion model, which links together the overall processes of bedrock channel erosion as in other landform evolution models. In this study, previous bedrock incision models based on physical processes (especially abrasion) are reviewed and new modifications are introduced. Using newly formulated numerical model, the role of spatial pattern and intensity of tectonic uplift on changes in river longitudinal profile was simulated and discussed.

Proposed program for monitoring recent Crustal movement in Korean Peninsula

  • Hamdy, Ahmed M.;Jo, Bong-Gon
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.4
    • /
    • pp.283-292
    • /
    • 2002
  • The Korean peninsula is located at the edge of the East Asian active margin. The seismic activity in the Korean Peninsula is relatively low compared with the neighboring countries China and Japan. According to the available Seismic information, the Korean Peninsula is not totally safe from the Earthquake disaster. Moreover, the area is surrounded by varies tectonic forces which is resulted from the relative movements of the surrounding tectonic plates "Pacific, Philippine Sea, Eurasian and South China". Nowadays South Korea has 65 GPS stations belong to 5 governmental organizations "each organization figure out its own GPS stations for different requirements" In order to minimize the seismic hazard in the Korean Peninsula a program for monitoring the recent crustal movement has been designed considering the uses of the available GPS station "some selected stations from the previously mentioned stations" and the tectonic settings in and around the Korean Peninsula. This program is composed of two main parts, the first part to monitor the crustal deformation around the Korean Peninsula with the collaboration of the surrounding countries "China and Japan" this part is composed of two phases "East Sea Phase and Yellow Sea Phase". These phases will be helpful in determining the deformation parameters in the East Sea and the Yellow Sea respectively While the Second part of this program, is designed to determine the deformation parameters id and around the main faults in the Korean Peninsula and the relative movement between the Korean Peninsula and the Cheju Island. Through out this study the needs of crustal movement center rose up to collect the data from the previously mentioned stations and Organizations in order to use such reliable data in different geodynamical application.

  • PDF

Tectonic Link between NE China and Korean Peninsula, Revealed by Interpreting CHAMP Satellite Magnetic and GRACE Satellite Gravity Data

  • Choi, Sungchan;Oh, Chang-Whan;Luehr, Herrmann
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.209-217
    • /
    • 2006
  • The major continental blocks in NE-Asia are the North China Block and the South China Blo, which have collided, starting from the Korean peninsula. The suture zone in NE China between two blocks is well defined from the QinIing-Dabie-Orogenic Belt to the Jiaodong (Sulu) Belt by the geological and geophysical interpretation. The discovery of high pressure metamorphic rocks in the Hongsung area of the Korean peninsula can be used to estimate the suture zone. This indicates that the suture zone in the Jiaodong Belt might be extended to Hongsung area. However, due to the lack of geological and geophysical data over the Yellow sea, the extension of the suture zone to the Korean peninsula across the Yellow Sea is obscure. To find out the tectonic relationship between NE China and the Korean peninsula it is necessary to complete U-ie homogeneous geophysical dataset of NE Asia, which can be provided by satellite observations. The CHAMP lithospheric magnetic field (MF3) and CHAMP-GRACE gravity field, combined with surface measured data, allow a much more accurate in-ference of tectonic structures than previously available. The CHAMP magnetic anomaly map reveals significant magnetic lows in the Yellow Sea near Nanjing and Hongsung, where are characterized by gravity highs on U-ie CHAMP-GRACE gravity anomaly map. To evaluate the depth and location of poten-tial field anomaly causative bodies, the Euler Deconvolution method is implemented. After comparing the two potential field solutions with the simplified geological map containing tectonic lines and the distribution of earthquakes epicenters, it is found that the derived structure boundaries of both are well coincident with the seismic activities as well as with the tectonic lineaments. The interpretation of the CHAMP satellite magnetic and GRACE satellite gravity datasets reveal two tectonic boundaries in U-ie Yellow Sea and the Korean peninsula, indicating U-ie norttiern and southern margins of the suture zone between the North China Block and the South China Block. The former is extended from the Jiaodong Belt in East China to the Imjingang Belt on the Korean peninsula, the later from Nanjing, East China, to Hongsung, the Korean peninsula. The tectonic movement in or near the suture zone might be responsible for the seismic activities in the western region of the Korean Peninsula and the development of the Yellow Sea sedimentary basin.

  • PDF

Tectonic features along the South Scotia Ridge, Antarctica (남극해 남스코시아 해령 주변의 지체구조)

  • Hong, Jong-Kuk;Jin, Young-Keun;Lee, Joo-Han;Nam, Sang-Heon;Park, Min-Kyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.139-144
    • /
    • 2005
  • Multichannel seismic survey has conducied along the South Scotia Ridge which is located in the northern part of Weddell sea, Antarctic sea, The South Scotia Ridge is part of continental crust extended from Antarctic Peninsula. It borders on Oceanic plates, the Scotia sea plate and Powell basin. Transtensional tectonics along the sinistral transform fault plate boundary led to the creation of the present tectonic geomorphology of the South Scotia Ridge. The fan-shaped deposits with angular unconformities in the central depression is interpreted as a divergent tectonic movement along the ridge.

  • PDF

Tectonic Features along the South Scotia Ridge, Antarctica (남극해 남스코시아 해령 주변의 지체구조)

  • Hong, Jong-Kuk;Jin, Young-Keun;Lee, Joo-Han;Nam, Sang-Heon;Park, Min-Kyu
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.4
    • /
    • pp.215-219
    • /
    • 2005
  • Multichannel seismic survey has conducted along the South Scotia Ridge which is located in the northern part of Weddell sea, Antarctic sea. The South Scotia Ridge is part of continental crust extended from Antarctic Peninsula. It borders on Oceanic plates, the Scotia sea plate and Powell basin. Transtensional tectonics along the sinistral transform fault plate boundary led to the creation of the present tectonic geomorphology of the South Scotia Ridge. The fan-shaped deposits with angular unconformities in the central depression is interpreted as a divergent tectonic movement along the ridge.

  • PDF

A Study on the Vernacular Characteristics of Contemporary Earth Architecture (현대 흙건축의 버나큘러 특성에 관한 연구)

  • Kim, Tae-Hoon;Kim, Soon-Wung
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • Vernacular perspectives had been ignored in the movement of modern architecture. This study's purpose was to review vernacular perspectives and to identify vernacular characteristics of earth architecture. Six representative contemporary earth architects were selected, and then their works were analyzed. Themes of vernacular architecture based of Frampton's critical regionalism were emerged. Findings were as following: 1) constructed by considering the local climate and the region's natural characteristics, 2) constructed with local materials seeking integration of structure and finishing work, 3) having tectonic form included regional characteristics, 4) creating space of various senses and expression of texture through earth modeling, 5) presenting homogeneity of sense of place between site and architecture, and 6) pursuing ecological and sustainable architecture. These characteristics of contemporary earth architecture reflect the vernacular architecture inherited continually in architectural history. Therefore, contemporary earth architecture has been in line with contemporary architecture aiming for sustainability.

Paleomagnetic Study on the Tertiary Rocks in Pohang Area (포항일원에 분포하는 제3기 암류에 대한 고지자기 연구)

  • Min, Kyung Duck;Kim, Won Kyun;Lee, Dae Ha;Lee, Youn Soo;Kim, In Su;Lee, Young-Hoon
    • Economic and Environmental Geology
    • /
    • v.27 no.1
    • /
    • pp.49-63
    • /
    • 1994
  • Paleomagnetic study of Tertiary rocks in Pohang area has been carried out to determine the characteristic directon of natural remanent magnetization, the position of paleomagnetic pole, the stratigraphic correlation, and the tectonic movement. A total of 196 specimens was collected from 5 sites in the Pohang Basin, 19 sites in the Janggi Basin, and 10 sites in the Eoil Basin, respectively. The mean declination and inclination of 4 sites (3 sites in the Yonil Group and 1 site in the Yonil Basalt) are $-3.2^{\circ}$ and $54.3^{\circ}$, and yield the paleomagnetic pole position $86.9^{\circ}N$ and $7.7^{\circ}E$. These are the characteristic direction and pole position of Miocene Epoch by comparison with contemporary Eurasian and Chinese data. The characteristic direction and pole position of remaining 30 sites are $47.6^{\circ}$ and $57.5^{\circ}$, and $52.3^{\circ}N$ and $201.5^{\circ}E$, respectively. These show clockwise rotation of $50.8^{\circ}$ with respect to the Miocene ones resulted by a tectonic movement before the deposition of the Hakjeon Formation of the Yonil Group about 15~16 Ma in the study area. The mechanism of the clockwise rotation is considered to be the dextral movement of the Yangsan Fault presumably caused by the opening of the East Sea. The Yonil Basalt is reclassified into pre- and post-deposition of the Yonil Group, i.e. the former is early Miocene and the latter late Miocene.

  • PDF