• Title/Summary/Keyword: Technology network analysis

Search Result 3,920, Processing Time 0.039 seconds

Study on Tag, Trust and Probability Matrix Factorization Based Social Network Recommendation

  • Liu, Zhigang;Zhong, Haidong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2082-2102
    • /
    • 2018
  • In recent years, social network related applications such as WeChat, Facebook, Twitter and so on, have attracted hundreds of millions of people to share their experience, plan or organize, and attend social events with friends. In these operations, plenty of valuable information is accumulated, which makes an innovative approach to explore users' preference and overcome challenges in traditional recommender systems. Based on the study of the existing social network recommendation methods, we find there is an abundant information that can be incorporated into probability matrix factorization (PMF) model to handle challenges such as data sparsity in many recommender systems. Therefore, the research put forward a unified social network recommendation framework that combine tags, trust between users, ratings with PMF. The uniformed method is based on three existing recommendation models (SoRecUser, SoRecItem and SoRec), and the complexity analysis indicates that our approach has good effectiveness and can be applied to large-scale datasets. Furthermore, experimental results on publicly available Last.fm dataset show that our method outperforms the existing state-of-art social network recommendation approaches, measured by MAE and MRSE in different data sparse conditions.

Pixel level prediction of dynamic pressure distribution on hull surface based on convolutional neural network (합성곱 신경망 기반 선체 표면 압력 분포의 픽셀 수준 예측)

  • Kim, Dayeon;Seo, Jeongbeom;Lee, Inwon
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.78-85
    • /
    • 2022
  • In these days, the rapid development in prediction technology using artificial intelligent is being applied in a variety of engineering fields. Especially, dimensionality reduction technologies such as autoencoder and convolutional neural network have enabled the classification and regression of high-dimensional data. In particular, pixel level prediction technology enables semantic segmentation (fine-grained classification), or physical value prediction for each pixel such as depth or surface normal estimation. In this study, the pressure distribution of the ship's surface was estimated at the pixel level based on the artificial neural network. First, a potential flow analysis was performed on the hull form data generated by transforming the baseline hull form data to construct 429 datasets for learning. Thereafter, a neural network with a U-shape structure was configured to learn the pressure value at the node position of the pretreated hull form. As a result, for the hull form included in training set, it was confirmed that the neural network can make a good prediction for pressure distribution. But in case of container ship, which is not included and have different characteristics, the network couldn't give a reasonable result.

A Hybrid System of Joint Time-Frequency Filtering Methods and Neural Network Techniques for Foreign Exchange Rate Forecasting (환율예측을 위한 신호처리분석 및 인공신경망기법의 통합시스템 구축)

  • 신택수;한인구
    • Journal of Intelligence and Information Systems
    • /
    • v.5 no.1
    • /
    • pp.103-123
    • /
    • 1999
  • Input filtering as a preprocessing method is so much crucial to get good performance in time series forecasting. There are a few preprocessing methods (i.e. ARMA outputs as time domain filters, and Fourier transform or wavelet transform as time-frequency domain filters) for handling time series. Specially, the time-frequency domain filters describe the fractal structure of financial markets better than the time domain filters due to theoretically additional frequency information. Therefore, we, first of all, try to describe and analyze specially some issues on the effectiveness of different filtering methods from viewpoint of the performance of a neural network based forecasting. And then we discuss about neural network model architecture issues, for example, what type of neural network learning architecture is selected for our time series forecasting, and what input size should be applied to a model. In this study an input selection problem is limited to a size selection of the lagged input variables. To solve this problem, we simulate on analyzing and comparing a few neural networks having different model architecture and also use an embedding dimension measure as chaotic time series analysis or nonlinear dynamic analysis to reduce the dimensionality (i.e. the size of time delayed input variables) of the models. Throughout our study, experiments for integration methods of joint time-frequency analysis and neural network techniques are applied to a case study of daily Korean won / U. S dollar exchange returns and finally we suggest an integration framework for future research from our experimental results.

  • PDF

Foresight study on the Overseas Export of Nuclear Power Plants (시나리오 기반 미래원전산업의 환경변화 전망 및 수출전략 도출)

  • Hwang, Byung Yong;Choi, Han Lim;Lee, Yong Suk
    • Journal of Technology Innovation
    • /
    • v.20 no.3
    • /
    • pp.1-28
    • /
    • 2012
  • This study conducted a qualitative analysis on the Korea's nuclear energy sector in 2030 through scenario-based strategic foresight method. Specifically, the relationships between environmental influencing factors of the future nuclear energy sector was examined from a multi-dimensional perspective on the basis of STEEP analysis and network analysis. In addition, scenario planning method was used with key uncertainty factors (KUF) to create three predictable strategic scenarios including optimistic, business as usual, and pessimistic. Common strategies that need to be urgently pursued as well as the maximum risk avoidance strategies for each scenario were also presented. This study further identified energy pricing, global economic trend, competitiveness in nuclear technology, and marketing capability as key uncertainty factors in the future nuclear energy industry sector. In order to furnish effective export strategy in the future nuclear energy sector, it was also suggested that government policy should adopt following measures as top priorities: securing nuclear safety technology, educating nuclear engineers, securing nuclear resources such as uranium, increasing nuclear capability and so on. The implications and limitations of this study were then discussed based on research findings.

  • PDF

Analyzing Core Tehnology and Technological Convergence in Healthcare Using Topic Modeling and Network Analysis: Focus on Patent Information (토픽모델링과 네트워크분석을 활용한 헬스케어 분야의 핵심기술과 기술융합 분석 연구: 특허정보를 중심으로)

  • Kim, Eun-Jung;Choi, Hee-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.763-778
    • /
    • 2022
  • In this study we aim to identify the core technologies that play central roles along with the peripheral technologies that contribute to the technology convergence in digital healthcare. A total of 376 korean-patents related to healthcare were gathered from 2011 to 2020, and a topic modeling technique and a network analysis were conducted on the collected data. Six major topics were derived through the topic modeling procedure which are "data collection", "signal measurement", "health management", "data transmission", "diagnostic treatment", and "measurement device". Each of the six topics were analyzed to depict relations among technologies, specify the convergence characteristics, and identify the core-technology through centrality analysis. The study illustrates the present status of digital healthcare technology development and the technological convergence in South Korea and is anticipated to help establish policies to foster healthcare industry.

Analysis of User Reviews for Webtoon Applications Using Text Mining (텍스트 마이닝을 활용한 웹툰 애플리케이션 사용자 리뷰 분석)

  • Shin, Hyorim;Choi, Junho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.457-468
    • /
    • 2022
  • With the rapid growth of the webtoon industry, a new model for webtoon applications has emerged. We have entered the era of webtoon application version 3.0 after ver 1.0 and ver 2.0. Despite these changes, research on user review analysis for webtoon applications is still insufficient. Therefore, this study aims to analyze user reviews for 'Kakao Webtoon (Daum Webtoon)' that presented the webtoon application 3.0 model. For analysis, 20,382 application reviews were collected and pre-processed, and TF-IDF, network analysis, topic modeling, and emotional analysis were conducted for each version. As a result, the user experience of the webtoon application for each version was analyzed and usability testing conducted.

A Study on Intelligent Value Chain Network System based on Firms' Information (기업정보 기반 지능형 밸류체인 네트워크 시스템에 관한 연구)

  • Sung, Tae-Eung;Kim, Kang-Hoe;Moon, Young-Su;Lee, Ho-Shin
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.67-88
    • /
    • 2018
  • Until recently, as we recognize the significance of sustainable growth and competitiveness of small-and-medium sized enterprises (SMEs), governmental support for tangible resources such as R&D, manpower, funds, etc. has been mainly provided. However, it is also true that the inefficiency of support systems such as underestimated or redundant support has been raised because there exist conflicting policies in terms of appropriateness, effectiveness and efficiency of business support. From the perspective of the government or a company, we believe that due to limited resources of SMEs technology development and capacity enhancement through collaboration with external sources is the basis for creating competitive advantage for companies, and also emphasize value creation activities for it. This is why value chain network analysis is necessary in order to analyze inter-company deal relationships from a series of value chains and visualize results through establishing knowledge ecosystems at the corporate level. There exist Technology Opportunity Discovery (TOD) system that provides information on relevant products or technology status of companies with patents through retrievals over patent, product, or company name, CRETOP and KISLINE which both allow to view company (financial) information and credit information, but there exists no online system that provides a list of similar (competitive) companies based on the analysis of value chain network or information on potential clients or demanders that can have business deals in future. Therefore, we focus on the "Value Chain Network System (VCNS)", a support partner for planning the corporate business strategy developed and managed by KISTI, and investigate the types of embedded network-based analysis modules, databases (D/Bs) to support them, and how to utilize the system efficiently. Further we explore the function of network visualization in intelligent value chain analysis system which becomes the core information to understand industrial structure ystem and to develop a company's new product development. In order for a company to have the competitive superiority over other companies, it is necessary to identify who are the competitors with patents or products currently being produced, and searching for similar companies or competitors by each type of industry is the key to securing competitiveness in the commercialization of the target company. In addition, transaction information, which becomes business activity between companies, plays an important role in providing information regarding potential customers when both parties enter similar fields together. Identifying a competitor at the enterprise or industry level by using a network map based on such inter-company sales information can be implemented as a core module of value chain analysis. The Value Chain Network System (VCNS) combines the concepts of value chain and industrial structure analysis with corporate information simply collected to date, so that it can grasp not only the market competition situation of individual companies but also the value chain relationship of a specific industry. Especially, it can be useful as an information analysis tool at the corporate level such as identification of industry structure, identification of competitor trends, analysis of competitors, locating suppliers (sellers) and demanders (buyers), industry trends by item, finding promising items, finding new entrants, finding core companies and items by value chain, and recognizing the patents with corresponding companies, etc. In addition, based on the objectivity and reliability of the analysis results from transaction deals information and financial data, it is expected that value chain network system will be utilized for various purposes such as information support for business evaluation, R&D decision support and mid-term or short-term demand forecasting, in particular to more than 15,000 member companies in Korea, employees in R&D service sectors government-funded research institutes and public organizations. In order to strengthen business competitiveness of companies, technology, patent and market information have been provided so far mainly by government agencies and private research-and-development service companies. This service has been presented in frames of patent analysis (mainly for rating, quantitative analysis) or market analysis (for market prediction and demand forecasting based on market reports). However, there was a limitation to solving the lack of information, which is one of the difficulties that firms in Korea often face in the stage of commercialization. In particular, it is much more difficult to obtain information about competitors and potential candidates. In this study, the real-time value chain analysis and visualization service module based on the proposed network map and the data in hands is compared with the expected market share, estimated sales volume, contact information (which implies potential suppliers for raw material / parts, and potential demanders for complete products / modules). In future research, we intend to carry out the in-depth research for further investigating the indices of competitive factors through participation of research subjects and newly developing competitive indices for competitors or substitute items, and to additively promoting with data mining techniques and algorithms for improving the performance of VCNS.

Implementation of Simulation System for Performance Analysis of CDN based on Mobile P2P (모바일 P2P 기반의 CDN의 성능 평가를 위한 시뮬레이션 시스템 구축)

  • Kim, Yu-Doo;Moon, Il-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.411-413
    • /
    • 2010
  • Now, smart phone markets are grows quickly. So it is needed research of CDN(Contents Delivery Network) technology for contents transmission in mobile networks. Especially the services of smart phone are focused on open platform model. So P2P(Peer to Peer) protocols will be used for mobile network because it is a distributed network architecture composed of participants that make a portion of their resources directly available to other network participants, without the need for a central server. Current research of P2P protocols for mobile network are not activated. The reason is appropriate in the mobile P2P network simulation environment, since it is not provided. So, in this paper we design a mobile P2P simulation system for CDN based on mobile P2P.

  • PDF

Analysis of Physiological Responses and Use of Fuzzy Information Granulation-Based Neural Network for Recognition of Three Emotions

  • Park, Byoung-Jun;Jang, Eun-Hye;Kim, Kyong-Ho;Kim, Sang-Hyeob
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1231-1241
    • /
    • 2015
  • In this study, we investigate the relationship between emotions and the physiological responses, with emotion recognition, using the proposed fuzzy information granulation-based neural network (FIGNN) for boredom, pain, and surprise emotions. For an analysis of the physiological responses, three emotions are induced through emotional stimuli, and the physiological signals are obtained from the evoked emotions. To recognize the emotions, we design an FIGNN recognizer and deal with the feature selection through an analysis of the physiological signals. The proposed method is accomplished in premise, consequence, and aggregation design phases. The premise phase takes information granulation using fuzzy c-means clustering, the consequence phase adopts a polynomial function, and the aggregation phase resorts to a general fuzzy inference. Experiments show that a suitable methodology and a substantial reduction of the feature space can be accomplished, and that the proposed FIGNN has a high recognition accuracy for the three emotions using physiological signals.

Frequency and Social Network Analysis of the Bible Data using Big Data Analytics Tools R (R을 이용한 성경 데이터의 빈도와 소셜 네트워크 분석)

  • Ban, ChaeHoon;Ha, JongSoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.93-96
    • /
    • 2018
  • Big datatics technology that can store and analyze data and obtain new knowledge has been adjusted for importance in many fields of the society. Big data is emerging as an important problem in the field of information and communication technology, but the mind of continuous technology is rising. R, a tool that can analyze big data, is a language and environment that enables information analysis of statistical bases. In this thesis, we use this to analyze the Bible data. R is used to investigate the frequency of what text is distributed and analyze the Bible through analysis of social network.

  • PDF