Lee, Jaewon;Jeong, Bum Seok;Kim, Mi Sug;Choi, Jee Wook;Ahn, Byung Un
Korean Journal of Biological Psychiatry
/
v.12
no.2
/
pp.165-172
/
2005
Objectives:The purpose of this study is to 1) conduct a discrimination analysis of schizophrenia and bipolar affective disorder using MMPI profile through artificial neural network analysis and logistic regression analysis, 2) to make a comparison between advantages and disadvantages of the two methods, and 3) to demonstrate the usefulness of artificial neural network analysis of psychiatric data. Procedure:The MMPI profiles for 181 schizophrenia and bipolar affective disorder patients were selected. Of these profiles, 50 were randomly placed in the learning group and the remaining 131 were placed in the validation group. The artificial neural network was trained using the profiles of the learning group and the 131 profiles of the validation group were analyzed. A logistic regression analysis was then conducted in a similar manner. The results of the two analyses were compared and contrasted using sensitivity, specificity, ROC curves, and kappa index. Results:Logistic regression analysis and artificial neural network analysis both exhibited satisfactory discriminating ability at Kappa index of greater than 0.4. The comparison of the two methods revealed artificial neural network analysis is superior to logistic regression analysis in its discriminating capacity, displaying higher values of Kappa index, specificity, and AUC(Area Under the Curve) of ROC curve than those of logistic regression analysis. Conclusion:Artificial neural network analysis is a new tool whose frequency of use has been increasing for its superiority in nonlinear applications. However, it does possess insufficiencies such as difficulties in understanding the relationship between dependent and independent variables. Nevertheless, when used in conjunction with other analysis tools which supplement it, such as the logistic regression analysis, it may serve as a powerful tool for psychiatric data analysis.
Journal of the Korea Institute of Military Science and Technology
/
v.17
no.6
/
pp.744-750
/
2014
In this paper, I have measured NCO(Network Centric Operation) Effectiveness of Anti-piracy Operation at the Chunghae Unit. For quantitative analysis, Network Centric Operations Conceptual Framework(U.S Office of Force Transformation) is applied. In accordance with the framework, the Chunghae unit anti-piracy operation scenario is analysed. The scenario is devided with two case(only voice communication and networking). The element of analysis be composed of the organic information, networking, share-ability, and individual information. As a result of analysis, the individual information of first case(only voice) gets 0.59 points. The other side, second case (networking) gets 1 points. This means that NCO has effect on the Chunghae Unit's mission. In addition, I stated the tactics advantage of NCO related a fighting power.
International Journal of Advanced Culture Technology
/
v.6
no.3
/
pp.142-150
/
2018
This paper describes the algorithm that lowers the dimension, maintains the object recognition and significantly reduces the eigenspace configuration time by combining the edge orientation histogram and principle component analysis. By using the detected object region as a recognition input image, in this paper the object recognition method combined with principle component analysis and the multi-layer network which is one of the intelligent classification was suggested and its performance was evaluated. As a pre-processing algorithm of input object image, this method computes the eigenspace through principle component analysis and expresses the training images with it as a fundamental vector. Each image takes the set of weights for the fundamental vector as a feature vector and it reduces the dimension of image at the same time, and then the object recognition is performed by inputting the multi-layer neural network.
In this paper, the relationships between code-share networks and performances in airline industry were analyzed by using Social Network Analysis (SNA). We first analyzed the schedule data from OAG (Official Airline Guide) to obtain core-share information of airline industries. SNA was, then, applied to the code-share information. Finally, statistical analysis was conducted to analyze the relationships between code-share social networks and performances. The result shows that the size and out-degree centrality have relatively significant effects on the performance of airline industries, while in-degree and betweenness centrality has less significant effects.
Kim, Wan-Jin;Bae, Ho Seuk;Kim, Woo Shik;Lee, Sang Kug;Choi, Sang Moon
Journal of the Korea Institute of Military Science and Technology
/
v.17
no.5
/
pp.591-603
/
2014
In this paper, we have described the characteristics of the Underwater Distributed Sensor Network (UDSN) and proposed the conceptual design guideline by an effectiveness analysis. To perform the effectiveness analysis, we defined an battlefield environment, and then analyzed principal components which compose the UDSN to find out simulation parameters and system constraints. We have chosen a measure of effectiveness based on a target trajectory, which could enhance intuitive understanding about current status, and performed various simulations to reveal critical design parameters in terms of sensor node types, arrangement, cost and combination of detection information.
International Journal of Computer Science & Network Security
/
v.21
no.8
/
pp.238-246
/
2021
The rapid rise of the Internet and social media has resulted in a large number of text-based reviews being placed on sites such as social media. In the age of social media, utilizing machine learning technologies to analyze the emotional context of comments aids in the understanding of QoS for any product or service. The classification and analysis of user reviews aids in the improvement of QoS. (Quality of Services). Machine Learning algorithms have evolved into a powerful tool for analyzing user sentiment. Unlike traditional categorization models, which are based on a set of rules. In sentiment categorization, Bidirectional Long Short-Term Memory (BiLSTM) has shown significant results, and Convolution Neural Network (CNN) has shown promising results. Using convolutions and pooling layers, CNN can successfully extract local information. BiLSTM uses dual LSTM orientations to increase the amount of background knowledge available to deep learning models. The suggested hybrid model combines the benefits of these two deep learning-based algorithms. The data source for analysis and classification was user reviews of Indian Railway Services on Twitter. The suggested hybrid model uses the Keras Embedding technique as an input source. The suggested model takes in data and generates lower-dimensional characteristics that result in a categorization result. The suggested hybrid model's performance was compared using Keras and Word2Vec, and the proposed model showed a significant improvement in response with an accuracy of 95.19 percent.
The Journal of the Convergence on Culture Technology
/
v.8
no.2
/
pp.109-116
/
2022
This study conducted YouTube network analysis on YouTube video related with prevention of COVID-19 and COVID-19 vaccine to explores how government's policy is spread via social media in the condition of COVID-19. As a result of network analysis on the Mask chaos, A surge in confirmed cases, supply of vaccine, the influence of media like YTN and KBS is large, their view count is high. Government highlights to inform correct information actively to face negative massage and misinformation. The media has to fact check on the misinformation and disinformation.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.6
/
pp.2606-2626
/
2016
This article investigates the distributed data storage problem in the space information network (SIN) using distributed fountain codes. Since space nodes in the SIN are resource-limited, in order to reduce energy consumption while improving the storage reliability, an efficient distributed storage based on fountain codes and probabilistic broadcasting (DSFPB) strategy is proposed. In the proposed strategy, source packets are disseminated among the entire network according to probabilistic broadcasting (PBcast), and the final degree distribution is close to the desired robust soliton distribution (RSD), this is benefited from the appropriate packets encoding procedure of the proposed strategy. As presented by the analysis and simulations, the total cost of data dissemination is greatly reduced compared with existing representative strategies, while improving the decoding performance.
Applying digital network technology for advanced nuclear plant requires deterministic communication for tight safety requirements, timely and reliable data delivery for operation-critical and mission-critical characteristics of nuclear plant. Communication protocols, such as IEEE 802/4 Token Bus, IEEE 802/5 Token Ring, FDDI, and ARCnet, which have deterministic communication capability are partially applied to several nuclear power plants. Although digital communication technologies have many advantages, it is necessary to consider the noise immunity from electromagnetic interference (EMI), electrical interference, impulse noise, and heat noise before selecting specific digital network technology for nuclear plant. In this paper, we consider the token frame loss and data frame loss rate due to the link error event, frame size, and link data rate in different protocols, and evaluate the possibility of failure to meet the hard real-time requirement in nuclear plant.
The PCI Express is a widely used system bus technology that connects the processor and the peripheral I/O devices. The PCI Express is nowadays regarded as a de facto standard in system area interconnection network. It has good characteristics in terms of high-speed, low power. In addition, PCI Express is becoming popular interconnection network technology as like Gigabit Ethernet, InfiniBand, and Myrinet which are extensively used in high-performance computing. In this paper, we designed and implemented a evaluation platform for interconnect network using PCI Express between two computing nodes. We make use of the non-transparent bridge (NTB) technology of PCI Express in order to isolate between the two subsystems. We constructed a testbed system and evaluated the performance on the testbed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.