• Title/Summary/Keyword: Technology classification

Search Result 4,104, Processing Time 0.039 seconds

Semi-Automatic Management of Classification Scheme with Interoperability (상호운용적 분류체계 관리를 위한 반자동 분류체계 관리방안)

  • Lee, Won-Goo;Shin, Sung-Ho;Kim, Kwang-Young;Jeon, Do-Heon;Yoon, Hwa-Mook;Sung, Won-Kyung;Lee, Min-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.466-474
    • /
    • 2011
  • Under the knowledge-based economy in 21C, the convergence and complexity in science and technology are being more active. Therefore, we have science and technology are classified properly, make not easy to construct the system to new next generation area. Thus we suggest the systematic solution method to flexibly extend classification scheme in order for content management and service organizations. In this way, we expect that the difficult of classification scheme management is minimized and the expense of it is spared.

A Study on the Classification by the Spatial Index of the University Campuses (대학 캠퍼스 공간적 지표에 의한 유형화에 관한 연구)

  • Kim, Cheon-Il;Shin, So-Young;Kim, Ick-Hwan
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.23 no.4
    • /
    • pp.3-10
    • /
    • 2016
  • This paper presents the investigation results on the classification of the university campuses. For the classification, we selected the spatial index as the evaluation indicator since the environmental factors and maintenance methods vary from university campus to university campus. For the study, we used eight spatial indices of the 30 national universities. This paper provides the spatial characteristics of different campus types, presents campus classification analysis as a future research approach to campus maintenance, and provides the data for the future study of comparison among universities. The results are as follows. 1) The classification investigation categorized the university campuses into three groups. Type 1 is a large-scale type, located near downtown. Type 2 is a medium-scale type, located at a remote site from downtown. Type 3 is a small-scale type, which is located comparatively near downtown. 2) Type 1 is a large-scale mixed area type, and 13 universities belong to this group. Type 2 is a medium-scale suburban area type, and six universities are in this group. Finally, Type 3 is a small-scale downtown area type, and 11 universities belong to this group.

The Characteristics of Silica Powders Prepared by Spray Pyrolysis Applying Droplet Classification Apparatus (액적 분급 장치를 적용한 분무열분해 공정으로부터 합성된 실리카 분말의 특성)

  • Kang, Yun-Chan;Ju, Seo-Hee;Koo, Hye-Young;Kang, Hee-Sang;Park, Seung-Bin
    • Korean Journal of Materials Research
    • /
    • v.16 no.10
    • /
    • pp.633-638
    • /
    • 2006
  • Silica powders with spherical shape and narrow size distribution were prepared by large-scale ultrasonic spray pyrolysis applying the droplet classification apparatus. On the other hand, silica powders prepared by large-scale ultrasonic spray pyrolysis without droplet classification apparatus had broad size distribution. Droplet classification apparatus used in this paper applied the principles of cyclone and dispersion plate with small holes. The droplets formed from the ultrasonic spray generator applying the droplet classification apparatus had narrow size distribution. The droplets with fine and large sizes were eliminated by droplet classification apparatus. The optimum flow rate of the carrier gas and diameter of the hole of the dispersion plate were studied to reduce the size distribution of the silica powders prepared by large-scale ultrasonic spray pyrolysis. The size distribution of the silica powders prepared by large-scale ultrasonic spray pyrolysis at the optimum preparation conditions was 0.76.

Support Vector Machine Classification Using Training Sets of Small Mixed Pixels: An Appropriateness Assessment of IKONOS Imagery

  • Yu, Byeong-Hyeok;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.507-515
    • /
    • 2008
  • Many studies have generally used a large number of pure pixels as an approach to training set design. The training set are used, however, varies between classifiers. In the recent research, it was reported that small mixed pixels between classes are actually more useful than larger pure pixels of each class in Support Vector Machine (SVM) classification. We evaluated a usability of small mixed pixels as a training set for the classification of high-resolution satellite imagery. We presented an advanced approach to obtain a mixed pixel readily, and evaluated the appropriateness with the land cover classification from IKONOS satellite imagery. The results showed that the accuracy of the classification based on small mixed pixels is nearly identical to the accuracy of the classification based on large pure pixels. However, it also showed a limitation that small mixed pixels used may provide insufficient information to separate the classes. Small mixed pixels of the class border region provide cost-effective training sets, but its use with other pixels must be considered in use of high-resolution satellite imagery or relatively complex land cover situations.

Alsat-2B/Sentinel-2 Imagery Classification Using the Hybrid Pigeon Inspired Optimization Algorithm

  • Arezki, Dounia;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.690-706
    • /
    • 2021
  • Classification is a substantial operation in data mining, and each element is distributed taking into account its feature values in the corresponding class. Metaheuristics have been widely used in attempts to solve satellite image classification problems. This article proposes a hybrid approach, the flower pigeons-inspired optimization algorithm (FPIO), and the local search method of the flower pollination algorithm is integrated into the pigeon-inspired algorithm. The efficiency and power of the proposed FPIO approach are displayed with a series of images, supported by computational results that demonstrate the cogency of the proposed classification method on satellite imagery. For this work, the Davies-Bouldin Index is used as an objective function. FPIO is applied to different types of images (synthetic, Alsat-2B, and Sentinel-2). Moreover, a comparative experiment between FPIO and the genetic algorithm genetic algorithm is conducted. Experimental results showed that GA outperformed FPIO in matters of time computing. However, FPIO provided better quality results with less confusion. The overall experimental results demonstrate that the proposed approach is an efficient method for satellite imagery classification.

Classification of Imbalanced Data Based on MTS-CBPSO Method: A Case Study of Financial Distress Prediction

  • Gu, Yuping;Cheng, Longsheng;Chang, Zhipeng
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.682-693
    • /
    • 2019
  • The traditional classification methods mostly assume that the data for class distribution is balanced, while imbalanced data is widely found in the real world. So it is important to solve the problem of classification with imbalanced data. In Mahalanobis-Taguchi system (MTS) algorithm, data classification model is constructed with the reference space and measurement reference scale which is come from a single normal group, and thus it is suitable to handle the imbalanced data problem. In this paper, an improved method of MTS-CBPSO is constructed by introducing the chaotic mapping and binary particle swarm optimization algorithm instead of orthogonal array and signal-to-noise ratio (SNR) to select the valid variables, in which G-means, F-measure, dimensionality reduction are regarded as the classification optimization target. This proposed method is also applied to the financial distress prediction of Chinese listed companies. Compared with the traditional MTS and the common classification methods such as SVM, C4.5, k-NN, it is showed that the MTS-CBPSO method has better result of prediction accuracy and dimensionality reduction.

Novel Image Classification Method Based on Few-Shot Learning in Monkey Species

  • Wang, Guangxing;Lee, Kwang-Chan;Shin, Seong-Yoon
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.2
    • /
    • pp.79-83
    • /
    • 2021
  • This paper proposes a novel image classification method based on few-shot learning, which is mainly used to solve model overfitting and non-convergence in image classification tasks of small datasets and improve the accuracy of classification. This method uses model structure optimization to extend the basic convolutional neural network (CNN) model and extracts more image features by adding convolutional layers, thereby improving the classification accuracy. We incorporated certain measures to improve the performance of the model. First, we used general methods such as setting a lower learning rate and shuffling to promote the rapid convergence of the model. Second, we used the data expansion technology to preprocess small datasets to increase the number of training data sets and suppress over-fitting. We applied the model to 10 monkey species and achieved outstanding performances. Experiments indicated that our proposed method achieved an accuracy of 87.92%, which is 26.1% higher than that of the traditional CNN method and 1.1% higher than that of the deep convolutional neural network ResNet50.

Research Trends in CNN-based Fingerprint Classification (CNN 기반 지문분류 연구 동향)

  • Jung, Hye-Wuk
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.653-662
    • /
    • 2022
  • Recently, various researches have been made on a fingerprint classification method using Convolutional Neural Networks (CNN), which is widely used for multidimensional and complex pattern recognition such as images. The CNN-based fingerprint classification method can be executed by integrating the two-step process, which is generally divided into feature extraction and classification steps. Therefore, since the CNN-based methods can automatically extract features of fingerprint images, they have an advantage of shortening the process. In addition, since they can learn various features of incomplete or low-quality fingerprints, they have flexibility for feature extraction in exceptional situations. In this paper, we intend to identify the research trends of CNN-based fingerprint classification and discuss future direction of research through the analysis of experimental methods and results.

Semi-Supervised SAR Image Classification via Adaptive Threshold Selection (선별적인 임계값 선택을 이용한 준지도 학습의 SAR 분류 기술)

  • Jaejun Do;Minjung Yoo;Jaeseok Lee;Hyoi Moon;Sunok Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.319-328
    • /
    • 2024
  • Semi-supervised learning is a good way to train a classification model using a small number of labeled and large number of unlabeled data. We applied semi-supervised learning to a synthetic aperture radar(SAR) image classification model with a limited number of datasets that are difficult to create. To address the previous difficulties, semi-supervised learning uses a model trained with a small amount of labeled data to generate and learn pseudo labels. Besides, a lot of number of papers use a single fixed threshold to create pseudo labels. In this paper, we present a semi-supervised synthetic aperture radar(SAR) image classification method that applies different thresholds for each class instead of all classes sharing a fixed threshold to improve SAR classification performance with a small number of labeled datasets.

A comparative analysis on market and technology in water industry (물산업 시장과 기술 비교분석)

  • Park, Imsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.437-454
    • /
    • 2021
  • This study investgates Korean water technology through the water market perspective and analyses its competitiveness. Based on the water technology classification, water technology competitiveness is analysed through the technological influence index and market dominance index which are based on the extracted water technology patents from the US, Europe, Korea, and Japan for the last decade. As a result, the Korean water technology patents were lack in influence and competitiveness in global market considering the large volume of patents. There are two most tech-influential industries in Korea; manufacturing industry consisting pipes, sterilization, disinfection, and advanced water purification equipment, and construction industry including seawater desalination and water resource development. Due to the domestic usage of the patents, the Korean water technology patents scored low in global market PFS(Patent Family Size) index compared to their CPP(Cites Per Patent) index. The study is meaningful in a way that the analysis on Korean water technology competitiveness using water technology classification system and patent analysis was conducted based on the perspective of the global water market.