• Title/Summary/Keyword: Technology Residual Life Analysis

Search Result 71, Processing Time 0.028 seconds

Study on a Residual Stress Reduce in Laser Welding Process using Ti6Al4V (티타늄 합금의 레이저 용접 공정 시 잔류 응력 저감 방안에 대한 연구)

  • Lee, Wooram;Park, Taesung;Park, Ikkeun
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.35-41
    • /
    • 2016
  • The experimental study has been performed through residual stress using the Ti6Al4V, investigate the effect of laser shock peening on laser welding process residual stress of Ti6Al4V welds in a reduce safety weld zone. This research evaluated the effects of shock waves from laser shock peening with a pulsed Nd:YAG laser on Ti6Al4V welding specimens, through the analysis of the residual stress of the specimens. The residual stress could be formed by the depth of 1 mm if the proposed method of reducing the residual stress is performed in the optimal condition. The welded structures and products during the production process increase the mechanical property of repeated stress, which could be expected to extend the fatigue life of the structure.

Evaluation of Residual Stress Effect about Fatigue Characteristic of U-shaped Structure (U자형 구조의 피로특성에 대한 잔류응력의 영향 평가)

  • Kim, Sang-Young;Koo, Jae-Mean;Seok, Chang-Sung;Mo, Jin-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.79-86
    • /
    • 2010
  • Mechanical structures with power sources experience repeated force produced by motors. In result, the life of the pipes reduces and ultimately, the pipes collapse. Such pipes are formed into several shapes and particularly, the U-shape pipe is damaged frequently. In most cases, the U-shape pipe is made with a straight pipe by complicated bending work. During this work process, plastic deformation of the pipe produces residual stress in the pipe. This residual stress significantly affects the fracture behavior of the pipe and induces the change of the stress ratio (min. stress/Max. stress = R). For this reason, residual stress has to be evaluated. In this paper, the residual stress of a U-shaped pipe was evaluated by FEM analysis. In addition, fatigue tests of the U-shaped pipe were performed by using a uniaxial fatigue testing machine. The results of the fatigue test were modified with the results of FEM (Finite Element Method) analysis for residual stress. The modified fatigue test results of the U-shaped pipe were compared with those of a straight pipe.

Analysis of an Autofrettage Effect to Improve Fatigue Life of the Automotive CNG Storage Vessel (자동차용 압축천연가스 저장용기의 피로수명향상을 위한 자긴처리 효과 분석)

  • Kim, H.Y.;Hwang, B.C.;Bae, W.B.;Han, S.M.;Kim, C.
    • Transactions of Materials Processing
    • /
    • v.17 no.4
    • /
    • pp.292-301
    • /
    • 2008
  • Type 2 compressed natural gas(CNG) storage vessels for automobiles are becoming widely used. They are not only supplied to automakers in Korea, such as Hyundai Motors, but increasingly, they are being exported overseas. Autofrettage is a process that produces beneficial residual stresses in a vessel by subjecting it to excessive internal pressure. This strengthens the vessel and improves its fatigue resistance. This paper presents research investigating the autoftettage process and residual stresses it produces in type 2 CNG storage vessels. A finite element analysis technique and a closed form equation are used. Then, fatigue resistance is analyzed through a fatigue evaluation performed according to ASME section VIII.

Analysis of residual drying stress in Larix Kaempferi wood used as glulam laminar (집성재 라미나용 낙엽송 재내 잔류 건조응력 변화 분석)

  • Han, Yeonjung;Chang, Yoon-Seong;Park, Yonggun;Jeong, Gi-Young;Hong, Jung-Pyo;Lee, Jun-Jae;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.535-543
    • /
    • 2013
  • The objective of this study was to analyse the residual stress in Larix kaempferi board during and after kiln-drying. The boards were primarily intended for using as laminar of cross laminated timber (CLT). In this study, the equivalence of moisture content by equalizing treatment was proved and reduction of residual stress by conditioning treatment was quantified. Prong test and slice test were carried out to analyse the residual stress in wood during drying. Transverse casehardening was measured immediately after making prong sample. Residual stress of four parts in wood from surface to center was analyzed quantitatively based on elastic deformation after just cutting slices from board. Tensile stress and compressive stress on the surface of board during drying did not exceed 2.2 MPa when boards were dried by kiln-drying schedule of T10-C4 and T12-D5. Because the tensile strength and compressive strength of transverse direction of Larix kaempferi lumber are 2.65 MPa and 4.60 MPa, application of more severe drying schedule can be recommended. Cup and twist were reduced by about 40% by equalizing and conditioning treatments after drying.

Determination of Residual Concentration and Half-life Time in Soils of Imidazole Fungicide Prochloraz (Imidazole계 살균제 Prochloraz의 토양 중 잔류량과 반감기분석)

  • Choi, Yong Hwa;Han, Seong Soo;Kim, Il Kwang
    • Analytical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.67-71
    • /
    • 2002
  • The residual analysis and half-life time of imidazole fungicide prochloraz in soils (silty clay) were investigated by gas chromatography equipped electron capture detector (GC-ECD). The soil samples were extracted acetone/hexane(1:1) solvent and analyzed after separated by $LC-NH_2$ Sep-Pak solid column. Linear sensitivity of standard calibration curve was Y = 268.8600X + 0.0664, $R^2=0.9998$ between 0.05~1.00 ng. The detection limit was 0.02 mg/L and the average recoveries were 94.5~97.3% from the standard additional experiments with 0.10 and 0.40 mg/L. The half-life time was 24.4 days in room laboratory and 7.6 days in the field test soil.

EFFECT OF RESIDUAL STRESS BY SHOT PEENING ON FATIGUE STRENGTH OF LCV LEAF SPRING

  • BAE D. H.;SOHN I. S.;JUNG W. S.;KIM N. S.;JUNG W. W.;PARK S. C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.671-676
    • /
    • 2005
  • Spring is one of major suspension part of the light commercial vehicle (LCV). In the manufacturing process it is shot-peened to improve its fatigue strength. In this paper, residual stresses by shot peening were calculated through finite element analysis, and the effects of these residual stresses on fatigue strength of leaf spring were evaluated. Fatigue tests were performed with two kinds of specimens; one is actual leaf spring assembly, and the other is simulated 3-point bending specimen. Fatigue tests were performed under the loading condition that was measured on the proving ground. From the results, the maximum load-fatigue life relation of leaf spring was defined, and test results of 3 point bending specimen are in good agreement with those of leaf spring assembly. The effects of residual stresses by shot peening on fatigue strength of leaf spring is not large in the high load range, however, in the low load range, its effects were not negligible.

Life cycle cost analysis and smart operation mode of ground source heat pump system

  • Yoon, Seok;Lee, Seung-Rae
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.743-758
    • /
    • 2015
  • This paper presents an advanced life cycle cost (LCC) analysis of a ground source heat pump (GSHP) system and suggests a smart operation mode with a thermal performance test (TPT) and an energy pile system constructed on the site of the Incheon International Airport (IIA). First, an economic analysis of the GSHP system was conducted for the second passenger terminal of the IIA considering actual influencing factors such as government support and the residual value of the equipment. The analysis results showed that the economic efficiency of the GSHP system could be increased owing to several influential factors. Second, a multiple regression analysis was conducted using different independent variables in order to analyze the influence indices with regard to the LCC results. Every independent index, in this case the initial construction cost, lifespan of the equipment, discount rate and the amount of price inflation can affect the LCC results. Third, a GSHP system using an energy pile was installed on the site of the construction laboratory institute of the IIA. TPTs of W-shape and spiral-coil-type GHEs were conducted in continuous and intermittent operation modes, respectively, prior to system operation of the energy pile. A cooling GSHP system in the energy pile was operated in both the continuous and intermittent modes, and the LCC was calculated. Furthermore, the smart operation mode and LCC were analyzed considering the application of a thermal storage tank.

Novel Properties for Endoglucanase Acquired by Cell-Surface Display Technique

  • Shi, Baosheng;Ke, Xiaojing;Yu, Hongwei;Xie, Jing;Jia, Yingmin;Guo, Runfang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1856-1862
    • /
    • 2015
  • In order to improve the stability of endoglucanase under thermal and acidic conditions, the endoglucanase gene was fused to the N-terminus of the Saccharomyces cerevisiae pir gene, encoding the cell wall protein PIR. The fusion gene was transformed into Pichia pastoris GS115 for expression. A resulting strain with high expression and high activity was identified by examining resistance to Geneticin 418, Congo red staining, and quantitative analysis of enzyme activity. SDS-PAGE analysis revealed that the endoglucanase was successfully displayed on the yeast cell surface. The displayed endoglucanase (DEG) showed maximum activity towards sodium carboxyl methyl cellulose at approximately 275 IU/g cell dry weight. DEG exhibited greater than 60% residual activity in the pH range 2.5-8.5, higher than free endoglucanase (FEG), which had 40% residual activity at the same pH range. The highest tolerated temperature for DEG was 70℃, much higher than that of FEG, which was approximately 50℃. Moreover, DEG showed 91.1% activity at 65℃ for 120 min, while FEG only kept 77.8% residual activity over the same period. The half-life of DEG was 270 min at 65℃, compared with only 150 min for FEG. DEG could be used repeatedly at least three times. These results suggest that the DEG has broad applications as a yeast whole-cell biocatalyst, due to its novel properties of high catalytic efficiency, acid-thermal stabilities, and reusability.

Elastic-Plastic Stress Analysis and Fatigue Lifetime Prediction of Cross-Bores in Autofrettaged Pressure Vessels

  • Koh, Seung-Kee
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.935-946
    • /
    • 2000
  • Elastic-plastic stress analysis has been performed to evaluate the fatigue life of an autofrettaged pressure vessel containing cross-bores subjected to pulsating internal pressure of 200 MPa. Finite element analyses were used to calculate the residual and operating stress distributions of the pressure vessel due to the autofrettage process and pulsating internal pressure, respectively. Theoretical stress concentration factors of 3.06, 2.58, and 2.64 were obtained at the cross-bore of the pressure vessel due to internal pressure, 50%, and 100% autofrettage loadings, respectively. Local stresses and local strains determined from the elastic-plastic finite element analysis were employed to calculate the failure location and fatigue life of the pressure vessel with radial cross-bores, incorporating the low-cycle fatigue properties of the pressure vessel steel and fatigue damage parameters. Increase in the amount of overstrain by autofrettage process moved the crack initiation location from the inner radius toward a mid-wall, and extended the crack initiation life. Predicted fatigue life of the fully autofrettaged pressure vessel with cross-bores increased about 50%, compared to the unautofrettaged pressure vessel. At the autofrettage level higher than 50%, the failure location and fatigue life of the pressure vessel were not significantly influenced by the autofrettage level.

  • PDF

Analysis of Half-life Time and Residual Concentration of Fungicide Iminoctadine Triacetate in Soils (토양에서 살균제 Iminoctadine Triacetate의 반감기와 잔류농도의 분석)

  • Oh, Hae-Bum;Kim, Il-Kwang;Jeong, Seung-ll;Lim, Bang-Hyun;Han, Sung-Soo;Choi, Yong-Hwa
    • Analytical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.34-40
    • /
    • 2000
  • The optimum conditions for the half-life time and residual analysis of the iminoactadine triacetate fungicide on soils were investigated by using the gas chromatography. Iminoctadine triacetate(IOTA) was extracted from soils with 2.0 M-NaOH/methanol and chloroform. The extracted IOTA was derivatized to pyrimidine hexafluroacetylacetone by the acetylation and analyzed with GC/ECD after elimination of moisture and impurities on the Sep-Pak column. From the standard addition experiments with 0.1 and 1.0 ppm, the average recoveries were ranged from 83.8 to 93.2 % and the detection limit was 0.005 ppm. The half-life time of iminoctadine triacetate in the silty clay was 30 days in the laboratory and 19.5 days in the field test whereas it was 27 days and 17.5 days for each in case of silty loam.

  • PDF