• Title/Summary/Keyword: Technology Differentiation

Search Result 1,013, Processing Time 0.028 seconds

ONTOGENETIC ASPECTS OF STEROIDOGENESIS BY GONADS OF DUCKS AND ITS ROLE IN SEX DIFFERENTIATION

  • Doi, O.;Iwasawa, A.;Nakamura, T.;Tanabe, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.1
    • /
    • pp.75-81
    • /
    • 1994
  • To elucidate the relationship between steroidogenesis and sex differentiation in the duck, plasma, testicular and ovarian testosterone, estradiol-$17{\beta}$ and progesterone concentration in male and female embryo of day 11 to 27 (just before hatching) of incubation and in 1- to 7-day-old male and female duckling were investigated by radioimmunoassays. Plasma estradiol-$17{\beta}$ concentration in female embryos declined from very high at days 11 and 15 of incubation and remained at low levels after hatching. Male plasma estradiol-$17{\beta}$ concentration were always lower than those of the female throughout this period. Plasma testosterone and progesterone concentrations in both sexes were low during the embryonic stage, but then increased to peaks 3 days and 1 day after hatching, respectively. Estradiol-$17{\beta}$ contents were much higher in the left ovary than the right ovary or testes throughout the experimental period. The estradiol-$17{\beta}$ content of the left ovary was very high at day 15 of incubation, and decreased gradually thereafter. Both in right ovary and testes, estradiol-$17{\beta}$ contents were always low. Testosterone and progesterone contents in the left ovary were low from day 11 to 23 of incubation, and reached a peak 1 day after hatching. Progesterone content in the right ovary and testes were low levels over time period examined. Testosterone and progesterone contents were much higher in the left ovary than the right ovary and testes. The present results clearly demonstrate that the capacity of the embryonic left ovary of duck to synthesize estradiol-$17{\beta}$ and testosterone is much higher than that of the embryonic testis. It is suggested that estrogen secreted from the embryonic ovary earlier than day 15 of incubation has an important role in female sexual differentiation in the duck, and the sex of the avian species is basically male with homozygous sex chromosome (ZZ).

Epigenetic modification of retinoic acid-treated human embryonic stem cells

  • Cheong, Hyun-Sub;Lee, Han-Chul;Park, Byung-Lae;Kim, Hye-Min;Jang, Mi-Jin;Han, Yong-Mahn;Kim, Seun-Young;Kim, Yong-Sung;Shin, Hyoung-Doo
    • BMB Reports
    • /
    • v.43 no.12
    • /
    • pp.830-835
    • /
    • 2010
  • Epigenetic modification of the genome through DNA methylation is the key to maintaining the differentiated state of human embryonic stem cells (hESCs), and it must be reset during differentiation by retinoic acid (RA) treatment. A genome-wide methylation/gene expression assay was performed in order to identify epigenetic modifications of RA-treated hESCs. Between undifferentiated and RA-treated hESCs, 166 differentially methylated CpG sites and 2,013 differentially expressed genes were discovered. Combined analysis of methylation and expression data revealed that 19 genes (STAP2, VAMP8, C10orf26, WFIKKN1, ELF3, C1QTNF6, C10orf10, MRGPRF, ARSE, LSAMP, CENTD3, LDB2, POU5F1, GSPT2, THY1, ZNF574, MSX1, SCMH1, and RARB) were highly correlated with each other. The results provided in this study will facilitate future investigations into the interplay between DNA methylation and gene expression through further functional and biological studies.

The roles of growth factors and hormones in the regulation of muscle satellite cells for cultured meat production

  • Syed Sayeed Ahmad;Hee Jin Chun;Khurshid Ahmad;Sibhghatulla Shaikh;Jeong Ho Lim;Shahid Ali;Sung Soo Han;Sun Jin Hur;Jung Hoon Sohn;Eun Ju Lee;Inho Choi
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.16-31
    • /
    • 2023
  • Cultured meat is a potential sustainable food generated by the in vitro myogenesis of muscle satellite (stem) cells (MSCs). The self-renewal and differentiation properties of MSCs are of primary interest for cultured meat production. MSC proliferation and differentiation are influenced by a variety of growth factors such as insulin-like growth factors (IGF-1 and IGF-2), transforming growth factor beta (TGF-β), fibroblast growth factors (FGF-2 and FGF-21), platelet-derived growth factor (PDGF) and hepatocyte growth factor (HGF) and by hormones like insulin, testosterone, glucocorticoids, and thyroid hormones. In this review, we investigated the roles of growth factors and hormones during cultured meat production because these factors provide signals for MSC growth and structural stability. The aim of this article is to provide the important idea about different growth factors such as FGF (enhance the cell proliferation and differentiation), IGF-1 (increase the number of myoblasts), PDGF (myoblast proliferation), TGF-β1 (muscle repair) and hormones such as insulin (cell survival and growth), testosterone (muscle fiber size), dexamethasone (myoblast proliferation and differentiation), and thyroid hormones (amount and diameter of muscle fibers and determine the usual pattern of fiber distributions) as media components during myogenesis for cultured meat production.

Gynostemma pentaphyllum extract and Gypenoside L enhance skeletal muscle differentiation and mitochondrial metabolism by activating the PGC-1α pathway in C2C12 myotubes

  • Kim, Yoon Hee;Jung, Jae In;Jeon, Young Eun;Kim, So Mi;Oh, Tae Kyu;Lee, Jaesun;Moon, Joo Myung;Kim, Tae Young;Kim, Eun Ji
    • Nutrition Research and Practice
    • /
    • v.16 no.1
    • /
    • pp.14-32
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Peroxisome proliferator-activated receptor-gamma co-activator-1α (PGC-1α) has a central role in regulating muscle differentiation and mitochondrial metabolism. PGC-1α stimulates muscle growth and muscle fiber remodeling, concomitantly regulating lactate and lipid metabolism and promoting oxidative metabolism. Gynostemma pentaphyllum (Thumb.) has been widely employed as a traditional herbal medicine and possesses antioxidant, anti-obesity, anti-inflammatory, hypolipemic, hypoglycemic, and anticancer properties. We investigated whether G. pentaphyllum extract (GPE) and its active compound, gypenoside L (GL), affect muscle differentiation and mitochondrial metabolism via activation of the PGC-1α pathway in murine C2C12 myoblast cells. MATERIALS/METHODS: C2C12 cells were treated with GPE and GL, and quantitative reverse transcription polymerase chain reaction and western blot were used to analyze the mRNA and protein expression levels. Myh1 was determined using immunocytochemistry. Mitochondrial reactive oxygen species generation was measured using the 2'7'-dichlorofluorescein diacetate assay. RESULTS: GPE and GL promoted the differentiation of myoblasts into myotubes and elevated mRNA and protein expression levels of Myh1 (type IIx). GPE and GL also significantly increased the mRNA expression levels of the PGC-1α gene (Ppargc1a), lactate metabolism-regulatory genes (Esrra and Mct1), adipocyte-browning gene fibronectin type III domain-containing 5 gene (Fndc5), glycogen synthase gene (Gys), and lipid metabolism gene carnitine palmitoyltransferase 1b gene (Cpt1b). Moreover, GPE and GL induced the phosphorylation of AMP-activated protein kinase, p38, sirtuin1, and deacetylated PGC-1α. We also observed that treatment with GPE and GL significantly stimulated the expression of genes associated with the anti-oxidative stress response, such as Ucp2, Ucp3, Nrf2, and Sod2. CONCLUSIONS: The results indicated that GPE and GL enhance exercise performance by promoting myotube differentiation and mitochondrial metabolism through the upregulation of PGC-1α in C2C12 skeletal muscle.

Effects of Medicinal Herb Extracts on Osteoblast Differentiation and Osteoclast Formation (한약재 추출물의 조골세포 분화 및 파골세포 형성에 미치는 영향)

  • Im, Nam-Kyung;Kim, Hyun-Jeong;Kim, Mi-Jin;Lee, Eun-Ju;Kim, Hyuk-Il;Lee, In-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.637-642
    • /
    • 2010
  • Bone is continuously remodeled by osteoblasts and osteoclasts. We investigated the effects of medicinal herbs, which act on bone metabolism. Fifteen kinds of medicinal herb extracts were screened for bone formation activity with osteoblastic cells, and MC3T3-E1 and bone resorption were screened with osteoclasts derived from mouse bone marrow macrophages. Among these samples, Actinidia polygama, Eucommia ulmoides Oliv., Schizonepeta tenuifolia, Sorbus commixta, and Zingiber officinale Rosc. extracts showed strong bone-forming activity accompanied with osteoblast proliferation and alkaline phosphatase activity. In addition, these extracts decreased tartrate-resistant acid phosphatase activity against osteoclast differentiation. The results indicate that these medicinal herb extracts can potentially prevent bone-related diseases such as osteoporosis by increasing osteoblast differentiation and reducing osteoclast activity.

Inhibition of Osteoclast Differentiation by Wheat Bran Butanol Fraction (밀기울 부탄올 분획물이 파골세포의 분화억제에 미치는 효과)

  • Moon, Jung Sun;Moon, Seung-Hee;Shim, Bo Won;Kang, Tae Jin;Lee, Sookyeon;Yim, Dongsool
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.3
    • /
    • pp.257-262
    • /
    • 2013
  • Osteoporosis is a disease of bones that leads to an increased risk of fracture. In osteoporosis, the bone mineral density is reduced, bone microarchitecture deteriorates, and the amount and variety of proteins in bone are altered. $It^{\circ}{\emptyset}s$ caused by the imbalance between born resorption and born formation. Recently natural products from plants have been extensively studied as therapeutic drugs to treat and prevent various diseases. Wheat bran is the hard outer layers of wheat grain and produced as a by-product of milling in the production of refined grains. In oriental medicines, Bu So Maek (Tritici Immaturi Semen) with wheat bran has been used as bronchitis, sedatives and anti-sweating effects. However effects of wheat bran butanol fraction (WBB, 50 ${\mu}g/ml$) in osteoclast differentiation remains unknown yet. Thus we investigated the effects of WBB on RANKL induced osteoclast differentiation. WBB inhibited osteoclast differentiation by downregulating the RANKL-induced activations of MAP kinases. Moreover mRNA expression of osteoclast-mediating molecules such as c-Fos, NFATc1 and DC-STAMP were attenuated by WBB during osteoclast differentiation. The finding of this study show that WBB and its components might prevent osteoclast-related bone loss.

Genetic Diversity of a Chinese Native Chicken Breed, Bian Chicken, Based on Twenty-nine Microsatellite Markers

  • Ding, Fu-Xiang;Zhang, Gen-Xi;Wang, Jin-Yu;Li, Yuan;Zhang, Li-Jun;Wei, Yue;Wang, Hui-Hua;Zhang, Li;Hou, Qi-Rui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.2
    • /
    • pp.154-161
    • /
    • 2010
  • The level of genetic differentiation and genetic structure in a Chinese native chicken breed, Bian chicken, and two controlled chicken populations (Jinghai chicken and Youxi chicken in China) were analysed based on 29 microsatellite markers. A total of 166 distinct alleles were observed across the 3 breeds, and 32 of these alleles (19.3%) were unique to only 1 breed. Bian chicken carried the largest number of private alleles at 15 (46.9%), followed by the Jinghai chicken with 12 private alleles (37.5%). The average polymorphism information content (0.5168) and the average expected heterozygote frequency (0.5750) of the Bian chicken were the highest, and those of the Jinghai chicken were 0.4915 and 0.5505, respectively, which were the lowest. Among 29 microsatellite loci, there were 15 highly informative loci in Bian chicken, and the other 14 were reasonably informative loci. The highly informative loci in Jinghai chicken and Youxi chicken were 17 and 14 respectively. Significant deviations from the Hardy-Weinberg equilibrium were observed at several locus-breed combinations, showing a deficit of heterozygotes in many cases. As a whole, genetic differentiation among the breeds estimated by the fixation index (Fst) were at 6.7% (p<0.001). The heterozygote deficit within population (Fis) was 22.2% (p<0.001), with the highest (0.249) in Bian chicken and lowest (0.159) in Youxi chicken. These results serve as an initial step in the plan for genetic characterization and conservation of the Chinese chicken genetic resource of Bian, as well as Jinghai and Youxi chickens.

Multi-parametric MRIs based assessment of Hepatocellular Carcinoma Differentiation with Multi-scale ResNet

  • Jia, Xibin;Xiao, Yujie;Yang, Dawei;Yang, Zhenghan;Lu, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5179-5196
    • /
    • 2019
  • To explore an effective non-invasion medical imaging diagnostics approach for hepatocellular carcinoma (HCC), we propose a method based on adopting the multiple technologies with the multi-parametric data fusion, transfer learning, and multi-scale deep feature extraction. Firstly, to make full use of complementary and enhancing the contribution of different modalities viz. multi-parametric MRI images in the lesion diagnosis, we propose a data-level fusion strategy. Secondly, based on the fusion data as the input, the multi-scale residual neural network with SPP (Spatial Pyramid Pooling) is utilized for the discriminative feature representation learning. Thirdly, to mitigate the impact of the lack of training samples, we do the pre-training of the proposed multi-scale residual neural network model on the natural image dataset and the fine-tuning with the chosen multi-parametric MRI images as complementary data. The comparative experiment results on the dataset from the clinical cases show that our proposed approach by employing the multiple strategies achieves the highest accuracy of 0.847±0.023 in the classification problem on the HCC differentiation. In the problem of discriminating the HCC lesion from the non-tumor area, we achieve a good performance with accuracy, sensitivity, specificity and AUC (area under the ROC curve) being 0.981±0.002, 0.981±0.002, 0.991±0.007 and 0.999±0.0008, respectively.

Operational matrix for differentiation of Haar function and its application for systems and control (하알함수 미분연산형렬의 유도와 시스템해석으로의 응용)

  • Ahn, P.;Kang, K.W.;Kim, M.K.;Kim, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2200-2202
    • /
    • 2003
  • In this paper, differentiation operational matrix for Haar function is derived. Proposed method only using a matrix calculation of Haar discrete matrix and block-pulse function's integration operational matrix. It would be possible to use to design an a1gebraic estimator for fault detection or unknown input observer effectively.

  • PDF