• 제목/요약/키워드: Technology Data Analysis

검색결과 16,078건 처리시간 0.05초

Utilization of Log Data Reflecting User Information-Seeking Behavior in the Digital Library

  • Lee, Seonhee;Lee, Jee Yeon
    • Journal of Information Science Theory and Practice
    • /
    • 제10권1호
    • /
    • pp.73-88
    • /
    • 2022
  • This exploratory study aims to understand the potential of log data analysis and expand its utilization in user research methods. Transaction log data are records of electronic interactions that have occurred between users and web services, reflecting information-seeking behavior in the context of digital libraries where users interact with the service system during the search for information. Two ways were used to analyze South Korea's National Digital Science Library (NDSL) log data for three days, including 150,000 data: a log pattern analysis, and log context analysis using statistics. First, a pattern-based analysis examined the general paths of usage by logged and unlogged users. The correlation between paths was analyzed through a χ2 analysis. The subsequent log context analysis assessed 30 identified users' data using basic statistics and visualized the individual user information-seeking behavior while accessing NDSL. The visualization shows included 30 diverse paths for 30 cases. Log analysis provided insight into general and individual user information-seeking behavior. The results of log analysis can enhance the understanding of user actions. Therefore, it can be utilized as the basic data to improve the design of services and systems in the digital library to meet users' needs.

무작위변량을 이용한 강우빈도분석시 내외삽오차에 관한 연구 (A Study on Error of Frequence Rainfall Estimates Using Random Variate)

  • 최한규;엄기옥
    • 산업기술연구
    • /
    • 제20권A호
    • /
    • pp.159-167
    • /
    • 2000
  • In the study rainfall frequency analysis attemped the many specific property data record duration it is differance from occur to error-term and probability ditribution of concern manifest. error-term analysis of method are fact sample data using method in other hand it is not appear to be fault that sample data of number to be small random variates. Therefore, day-rainfall data: to randomicity consider of this study sample data to the Monte Carlo method by randomize after data recode duration of form was choice method which compared an assumed maternal distribution from splitting frequency analysis consequence. In the conclusion, frequency analysis of chuncheon region rainfall appeared samll RMSE to the Gamma II distribution. In the rainfall frequency analysis estimate RMSE using random variates great transform, RMSE is appear that return period increasing little by little RMSE incresed and data number incresing to RMSE decreseing.

  • PDF

빅데이터 컴퓨팅을 위한 분석기법에 관한 연구 (A Study on the Analysis Techniques for Big Data Computing)

  • 오선진
    • 문화기술의 융합
    • /
    • 제7권3호
    • /
    • pp.475-480
    • /
    • 2021
  • 모바일 컴퓨팅과 클라우드 컴퓨팅 기술 그리고 소셜 네트워크 서비스의 급속한 발전과 더불어, 우리들은 시시각각 양산되고 있는 데이터의 홍수 속에서 살고 있으며, 이러한 대규모의 데이터는 매우 가치가 높은 중요한 정보를 품고 있다는 사실을 알게 되었다. 하지만 빅데이터는 잠재적인 유용한 가치와 치명적인 위험을 모두 가지고 있으며 오늘날 이러한 빅데이터로부터 유용한 정보를 효율적으로 추출해 내고 잠재된 정보를 효과적으로 활용하기 위한 연구와 응용이 활발하게 이루어지고 있는 상황이다. 여기서 빅데이터 컴퓨팅 과정 중 무엇보다도 중요한 것은 대용량 데이터로부터 유용하고 귀중한 정보를 효율적으로 추출해 낼 수 있는 적절한 데이터 분석기법을 찾아 적용하는 것이다. 본 연구에서는 이러한 빅데이터 컴퓨팅을 효율적으로 수행하여 원하는 유용한 정보를 추출할 수 있는 기존의 다양한 빅데이터 분석기법들을 조사하여, 그 특징과 장·단점 등을 비교 분석하고, 특별한 상황에서 빅데이터 분석기법을 이용하여 유용한 정보를 효율적으로 추출해 내고, 이들 잠재된 정보를 효과적으로 활용할 수 있도록 하는 방안을 제시하고자 한다.

Exploratory Methods for Joint Distribution Valued Data and Their Application

  • Igarashi, Kazuto;Minami, Hiroyuki;Mizuta, Masahiro
    • Communications for Statistical Applications and Methods
    • /
    • 제22권3호
    • /
    • pp.265-276
    • /
    • 2015
  • In this paper, we propose hierarchical cluster analysis and multidimensional scaling for joint distribution valued data. Information technology is increasing the necessity of statistical methods for large and complex data. Symbolic Data Analysis (SDA) is an attractive framework for the data. In SDA, target objects are typically represented by aggregated data. Most methods on SDA deal with objects represented as intervals and histograms. However, those methods cannot consider information among variables including correlation. In addition, objects represented as a joint distribution can contain information among variables. Therefore, we focus on methods for joint distribution valued data. We expanded the two well-known exploratory methods using the dissimilarities adopted Hall Type relative projection index among joint distribution valued data. We show a simulation study and an actual example of proposed methods.

포스텍 캠퍼스의 전력 사용 데이터 수집 및 분석 (Collection and Analysis of Electricity Consumption Data in POSTECH Campus)

  • 류도현;김광재;고영명;김영진;송민석
    • 품질경영학회지
    • /
    • 제50권3호
    • /
    • pp.617-634
    • /
    • 2022
  • Purpose: This paper introduces Pohang University of Science Technology (POSTECH) advanced metering infrastructure (AMI) and Open Innovation Big Data Center (OIBC) platform and analysis results of electricity consumption data collected via the AMI in POSTECH campus. Methods: We installed 248 sensors in seven buildings at POSTECH for the AMI and collected electricity consumption data from the buildings. To identify the amounts and trends of electricity consumption of the seven buildings, electricity consumption data collected from March to June 2019 were analyzed. In addition, this study compared the differences between the amounts and trends of electricity consumption of the seven buildings before and after the COVID-19 outbreak by using electricity consumption data collected from March to June 2019 and 2020. Results: Users can monitor, visualize, and download electricity consumption data collected via the AMI on the OIBC platform. The analysis results show that the seven buildings consume different amounts of electricity and have different consumption trends. In addition, the amounts of most buildings were significantly reduced after the COVID-19 outbreak. Conclusion: POSTECH AMI and OIBC platform can be a good reference for other universities that prepare their own microgrid. The analysis results provides a proof that POSTECH needs to establish customized strategies on reducing electricity for each building. Such results would be useful for energy-efficient operation and preparation of unusual energy consumptions due to unexpected situations like the COVID-19 pandemic.

A data-driven method for the reliability analysis of a transmission line under wind loads

  • Xing Fu;Wen-Long Du;Gang Li;Zhi-Qian Dong;Hong-Nan Li
    • Steel and Composite Structures
    • /
    • 제52권4호
    • /
    • pp.461-473
    • /
    • 2024
  • This study focuses on the reliability of a transmission line under wind excitation and evaluates the failure probability using explicit data resources. The data-driven framework for calculating the failure probability of a transmission line subjected to wind loading is presented, and a probabilistic method for estimating the yearly extreme wind speeds in each wind direction is provided to compensate for the incompleteness of meteorological data. Meteorological data from the Xuwen National Weather Station are used to analyze the distribution characteristics of wind speed and wind direction, fitted with the generalized extreme value distribution. Then, the most vulnerable tower is identified to obtain the fragility curves in all wind directions based on uncertainty analysis. Finally, the failure probabilities are calculated based on the presented method. The simulation results reveal that the failure probability of the employed tower increases over time and that the joint probability distribution of the wind speed and wind direction must be considered to avoid overestimating the failure probability. Additionally, the mixed wind climates (synoptic wind and typhoon) have great influence on the estimation of structural failure probability and should be considered.

Analysis on Types of Golf Tourism After COVID-19 by using Big Data

  • Hyun Seok Kim;Munyeong Yun;Gi-Hwan Ryu
    • International Journal of Advanced Culture Technology
    • /
    • 제12권1호
    • /
    • pp.270-275
    • /
    • 2024
  • Introduction. In this study, purpose is to analize the types of golf tourism, inbound or outbound, by using big data and see how movement of industry is being changed and what changes have been made during and after Covid-19 in golf industry. Method Using Textom, a big data analysis tool, "golf tourism" and "Covid-19" were selected as keywords, and search frequency information of Naver and Daum was collected for a year from 1 st January, 2023 to 31st December, 2023, and data preprocessing was conducted based on this. For the suitability of the study and more accurate data, data not related to "golf tourism" was removed through the refining process, and similar keywords were grouped into the same keyword to perform analysis. As a result of the word refining process, top 36 keywords with the highest relevance and search frequency were selected and applied to this study. The top 36 keywords derived through word purification were subjected to TF-IDF analysis, visualization analysis using Ucinet6 and NetDraw programs, network analysis between keywords, and cluster analysis between each keyword through Concor analysis. Results By using big data analysis, it was found out option of oversea golf tourism is affecting on inbound golf travel. "Golf", "Tourism", "Vietnam", "Thailand" showed high frequencies, which proves that oversea golf tour is now the re-coming trends.

특허정보를 활용한 분산형 에너지 기술융합 네트워크 분석 : 대구지역을 중심으로 (Network Analysis of Technology Convergence on Decentralized Energy by Using Patent Information : Focused on Daegu City Area)

  • 한장협;나중규;김채복
    • 산업경영시스템학회지
    • /
    • 제39권3호
    • /
    • pp.156-169
    • /
    • 2016
  • The objective of this study is to investigate patent trends of Daegu city which tries to introduce environment friendly energy and to develop new technology or new industry sprung from technology convergence on smart decentralized energy technology and other technologies. After applying network analysis to corresponding groups of technology or industry convergence, strategy for future energy convergence industry is provided. Patent data applied in Daegu city area are used to obtain research goal. The technology which contains several IPC codes (IPC Co-occurrence) is considered as a convergence technology. Path finder network analysis is used for visualizing and grouping by using IPC codes. The analysis results categorized 13 groups in energy convergence industry and reclassified them into 3 cluster groups (Smart Energy Product Production Technology Group, Smart Energy Convergence Supply Technology Group, Smart Energy Indirect Application Technology Group) considering the technical characteristics and policy direction. Also, energy industry has evolved rapidly by technological convergence with other industries. Especially, it has been converged with IT industry, and there is a trend that energy industry will be converged with service industry and manufacturing industry such as textile, automobile parts, mechanics, and logistics by employing infrastructure as well as network. Based on the research results on core patent technology, convergence technology and inter-industry analysis, the direction of core technology research and development as well as evolution on decentralized energy industry is identified. By using research design and methodology in this study, the trend of convergence technology is investigated based on objective data (patent data). Above all, we can easily confirm the core technology in the local industry by analyzing the industrial competitiveness in the macro level. Based on this, we can identify convergence industry and technology by performing the technological convergence analysis in the micro level.

자연어처리 알고리즘을 이용한 위험기반 항공안전데이터 자동분류 방안 연구 (A Study on Auto-Classification of Aviation Safety Data using NLP Algorithm)

  • 양성훈;최영;정소영;안주현
    • 한국항행학회논문지
    • /
    • 제26권6호
    • /
    • pp.528-535
    • /
    • 2022
  • 항공기 제작 및 운송 기술 발달로 국내 항공산업은 비약적인 발전을 이루었으나, 항공안전 사고는 지속해서 발생하고 있다. 관리 감독기관에서는 위험기반 항공안전데이터를 기반으로 위해 요인과 위험도를 분류하고, 운송사업자별 안전 경향성 파악과 취약분야를 도출하여 사전점검을 수행함으로써 사건·사고를 사전 예방중에 있다. 그러나 자연어 형식으로 기술된 항공안전데이터의 휴먼 분류는 지식과 경험, 성향에 따라 서로 다른 분류 결과를 초래하고, 이벤트 내용의 의미 파악 및 분류를 위한 작업에 상당한 시간을 소요케 한다. 이에, 본 논문에서는 KoBERT 모델을 fine-tunning하고 5천 건 이상의 항공안전데이터를 기계학습 시켜 신규 데이터의 분류 값을 예측한 결과 79.2%의 정확성을 보였다. 그리고 유사 이벤트에 대해 동일한 결과 예측과 fail 된 데이터 중 일부는 휴먼 에러에 의한 오류임을 확인할 수 있었다.

논문 및 특허 데이터를 활용한 전기자동차 기술 동향 예측 연구 (Electric Vehicle Technology Trends Forecast Research Using the Paper and Patent Data)

  • 구자욱;이종호;정명석;이주연
    • 디지털융복합연구
    • /
    • 제15권2호
    • /
    • pp.165-172
    • /
    • 2017
  • 본 논문에서는 전기자동차를 주제로 SCIE 및 SSCI 저널에 게재한 논문데이터를 활용한 시계열 분석과 국제특허분류(International patent classification, 이하 IPC) 별 특허 데이터를 활용한 시계열 분석과 노드엑셀을 활용한 네트워크 분석을 통해 2001년에서 2014년까지의 전기자동차의 기술 동향을 파악하고 특허와 논문 데이터의 상관관계 분석을 통하여 기술 동향을 분석하였다. 또한 예측기법 중 하나인 가중이동평균법으로 전기자동차의 유망 요소기술을 예측하였다. 본 연구의 결과 전기자동차 요소기술 중 배터리 기술이 유망한 기술로 나타났다.