• Title/Summary/Keyword: Technology Clustering

Search Result 1,161, Processing Time 0.028 seconds

A Mixed Co-clustering Algorithm Based on Information Bottleneck

  • Liu, Yongli;Duan, Tianyi;Wan, Xing;Chao, Hao
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1467-1486
    • /
    • 2017
  • Fuzzy co-clustering is sensitive to noise data. To overcome this noise sensitivity defect, possibilistic clustering relaxes the constraints in FCM-type fuzzy (co-)clustering. In this paper, we introduce a new possibilistic fuzzy co-clustering algorithm based on information bottleneck (ibPFCC). This algorithm combines fuzzy co-clustering and possibilistic clustering, and formulates an objective function which includes a distance function that employs information bottleneck theory to measure the distance between feature data point and feature cluster centroid. Many experiments were conducted on three datasets and one artificial dataset. Experimental results show that ibPFCC is better than such prominent fuzzy (co-)clustering algorithms as FCM, FCCM, RFCC and FCCI, in terms of accuracy and robustness.

Clustering Routing Algorithms In Wireless Sensor Networks: An Overview

  • Liu, Xuxun;Shi, Jinglun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.7
    • /
    • pp.1735-1755
    • /
    • 2012
  • Wireless sensor networks (WSNs) are becoming increasingly attractive for a variety of applications and have become a hot research area. Routing is a key technology in WSNs and can be coarsely divided into two categories: flat routing and hierarchical routing. In a flat topology, all nodes perform the same task and have the same functionality in the network. In contrast, nodes in a hierarchical topology perform different tasks in WSNs and are typically organized into lots of clusters according to specific requirements or metrics. Owing to a variety of advantages, clustering routing protocols are becoming an active branch of routing technology in WSNs. In this paper, we present an overview on clustering routing algorithms for WSNs with focus on differentiating them according to diverse cluster shapes. We outline the main advantages of clustering and discuss the classification of clustering routing protocols in WSNs. In particular, we systematically analyze the typical clustering routing protocols in WSNs and compare the different approaches based on various metrics. Finally, we conclude the paper with some open questions.

Detected Point Clustering Algorithm For Automatic Visual Inspection (자동외관검사를 위한 검출위치 클러스터링 알고리즘)

  • Ryu, Sun Joong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.3
    • /
    • pp.1-6
    • /
    • 2014
  • Visual defect inspection for electronics parts manufacturing processes is comprised of 2 steps - automatic visual inspection by machine and inspection by human inspectors. It is necessary that spatial points which were detected by the machine should be adequately clustered for subsequent human inspection. This research deals with the spatial clustering algorithm for the purpose of process productivity improvement. Distribution based clustering is newly developed and experimentally confirmed to show better clustering efficiency than existing algorithm - area based clustering.

Automatic Switching of Clustering Methods based on Fuzzy Inference in Bibliographic Big Data Retrieval System

  • Zolkepli, Maslina;Dong, Fangyan;Hirota, Kaoru
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.256-267
    • /
    • 2014
  • An automatic switch among ensembles of clustering algorithms is proposed as a part of the bibliographic big data retrieval system by utilizing a fuzzy inference engine as a decision support tool to select the fastest performing clustering algorithm between fuzzy C-means (FCM) clustering, Newman-Girvan clustering, and the combination of both. It aims to realize the best clustering performance with the reduction of computational complexity from O($n^3$) to O(n). The automatic switch is developed by using fuzzy logic controller written in Java and accepts 3 inputs from each clustering result, i.e., number of clusters, number of vertices, and time taken to complete the clustering process. The experimental results on PC (Intel Core i5-3210M at 2.50 GHz) demonstrates that the combination of both clustering algorithms is selected as the best performing algorithm in 20 out of 27 cases with the highest percentage of 83.99%, completed in 161 seconds. The self-adapted FCM is selected as the best performing algorithm in 4 cases and the Newman-Girvan is selected in 3 cases.The automatic switch is to be incorporated into the bibliographic big data retrieval system that focuses on visualization of fuzzy relationship using hybrid approach combining FCM and Newman-Girvan algorithm, and is planning to be released to the public through the Internet.

Mobile User Interface Pattern Clustering Using Improved Semi-Supervised Kernel Fuzzy Clustering Method

  • Jia, Wei;Hua, Qingyi;Zhang, Minjun;Chen, Rui;Ji, Xiang;Wang, Bo
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.986-1016
    • /
    • 2019
  • Mobile user interface pattern (MUIP) is a kind of structured representation of interaction design knowledge. Several studies have suggested that MUIPs are a proven solution for recurring mobile interface design problems. To facilitate MUIP selection, an effective clustering method is required to discover hidden knowledge of pattern data set. In this paper, we employ the semi-supervised kernel fuzzy c-means clustering (SSKFCM) method to cluster MUIP data. In order to improve the performance of clustering, clustering parameters are optimized by utilizing the global optimization capability of particle swarm optimization (PSO) algorithm. Since the PSO algorithm is easily trapped in local optima, a novel PSO algorithm is presented in this paper. It combines an improved intuitionistic fuzzy entropy measure and a new population search strategy to enhance the population search capability and accelerate the convergence speed. Experimental results show the effectiveness and superiority of the proposed clustering method.

A Density Peak Clustering Algorithm Based on Information Bottleneck

  • Yongli Liu;Congcong Zhao;Hao Chao
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.778-790
    • /
    • 2023
  • Although density peak clustering can often easily yield excellent results, there is still room for improvement when dealing with complex, high-dimensional datasets. One of the main limitations of this algorithm is its reliance on geometric distance as the sole similarity measurement. To address this limitation, we draw inspiration from the information bottleneck theory, and propose a novel density peak clustering algorithm that incorporates this theory as a similarity measure. Specifically, our algorithm utilizes the joint probability distribution between data objects and feature information, and employs the loss of mutual information as the measurement standard. This approach not only eliminates the potential for subjective error in selecting similarity method, but also enhances performance on datasets with multiple centers and high dimensionality. To evaluate the effectiveness of our algorithm, we conducted experiments using ten carefully selected datasets and compared the results with three other algorithms. The experimental results demonstrate that our information bottleneck-based density peaks clustering (IBDPC) algorithm consistently achieves high levels of accuracy, highlighting its potential as a valuable tool for data clustering tasks.

Arabic Text Clustering Methods and Suggested Solutions for Theme-Based Quran Clustering: Analysis of Literature

  • Bsoul, Qusay;Abdul Salam, Rosalina;Atwan, Jaffar;Jawarneh, Malik
    • Journal of Information Science Theory and Practice
    • /
    • v.9 no.4
    • /
    • pp.15-34
    • /
    • 2021
  • Text clustering is one of the most commonly used methods for detecting themes or types of documents. Text clustering is used in many fields, but its effectiveness is still not sufficient to be used for the understanding of Arabic text, especially with respect to terms extraction, unsupervised feature selection, and clustering algorithms. In most cases, terms extraction focuses on nouns. Clustering simplifies the understanding of an Arabic text like the text of the Quran; it is important not only for Muslims but for all people who want to know more about Islam. This paper discusses the complexity and limitations of Arabic text clustering in the Quran based on their themes. Unsupervised feature selection does not consider the relationships between the selected features. One weakness of clustering algorithms is that the selection of the optimal initial centroid still depends on chances and manual settings. Consequently, this paper reviews literature about the three major stages of Arabic clustering: terms extraction, unsupervised feature selection, and clustering. Six experiments were conducted to demonstrate previously un-discussed problems related to the metrics used for feature selection and clustering. Suggestions to improve clustering of the Quran based on themes are presented and discussed.

Enhanced Locality Sensitive Clustering in High Dimensional Space

  • Chen, Gang;Gao, Hao-Lin;Li, Bi-Cheng;Hu, Guo-En
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.3
    • /
    • pp.125-129
    • /
    • 2014
  • A dataset can be clustered by merging the bucket indices that come from the random projection of locality sensitive hashing functions. It should be noted that for this to work the merging interval must be calculated first. To improve the feasibility of large scale data clustering in high dimensional space we propose an enhanced Locality Sensitive Hashing Clustering Method. Firstly, multiple hashing functions are generated. Secondly, data points are projected to bucket indices. Thirdly, bucket indices are clustered to get class labels. Experimental results showed that on synthetic datasets this method achieves high accuracy at much improved cluster speeds. These attributes make it well suited to clustering data in high dimensional space.

Intelligent Clustering in Vehicular ad hoc Networks

  • Aadil, Farhan;Khan, Salabat;Bajwa, Khalid Bashir;Khan, Muhammad Fahad;Ali, Asad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3512-3528
    • /
    • 2016
  • A network with high mobility nodes or vehicles is vehicular ad hoc Network (VANET). For improvement in communication efficiency of VANET, many techniques have been proposed; one of these techniques is vehicular node clustering. Cluster nodes (CNs) and Cluster Heads (CHs) are elected or selected in the process of clustering. The longer the lifetime of clusters and the lesser the number of CHs attributes to efficient networking in VANETs. In this paper, a novel Clustering algorithm is proposed based on Ant Colony Optimization (ACO) for VANET named ACONET. This algorithm forms optimized clusters to offer robust communication for VANETs. For optimized clustering, parameters of transmission range, direction, speed of the nodes and load balance factor (LBF) are considered. The ACONET is compared empirically with state of the art methods, including Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO) based clustering techniques. An extensive set of experiments is performed by varying the grid size of the network, the transmission range of nodes, and total number of nodes in network to evaluate the effectiveness of the algorithms in comparison. The results indicate that the ACONET has significantly outperformed the competitors.

Incremental Fuzzy Clustering Based on a Fuzzy Scatter Matrix

  • Liu, Yongli;Wang, Hengda;Duan, Tianyi;Chen, Jingli;Chao, Hao
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.359-373
    • /
    • 2019
  • For clustering large-scale data, which cannot be loaded into memory entirely, incremental clustering algorithms are very popular. Usually, these algorithms only concern the within-cluster compactness and ignore the between-cluster separation. In this paper, we propose two incremental fuzzy compactness and separation (FCS) clustering algorithms, Single-Pass FCS (SPFCS) and Online FCS (OFCS), based on a fuzzy scatter matrix. Firstly, we introduce two incremental clustering methods called single-pass and online fuzzy C-means algorithms. Then, we combine these two methods separately with the weighted fuzzy C-means algorithm, so that they can be applied to the FCS algorithm. Afterwards, we optimize the within-cluster matrix and betweencluster matrix simultaneously to obtain the minimum within-cluster distance and maximum between-cluster distance. Finally, large-scale datasets can be well clustered within limited memory. We implemented experiments on some artificial datasets and real datasets separately. And experimental results show that, compared with SPFCM and OFCM, our SPFCS and OFCS are more robust to the value of fuzzy index m and noise.