• Title/Summary/Keyword: Techno-economic analysis

Search Result 193, Processing Time 0.028 seconds

Seismic response analysis of mega-scale buckling-restrained bracing systems in tall buildings

  • Gholipour, Mohammadreza;Mazloom, Moosa
    • Advances in Computational Design
    • /
    • v.3 no.1
    • /
    • pp.17-34
    • /
    • 2018
  • Tall buildings are categorized as important structures because of the large number of occupants and high construction costs. The choice of competent lateral load resisting systems in tall buildings is of crucial importance. Bracing systems have long been an economic and effective method for resisting lateral loads in steel structures. However, there are some potential adverse aspects to bracing systems such as the limitations they inflict on architectural plans, uplift forces and poor performances in compression. in order to eliminate the mentioned problems and for cost optimization, in this paper, six 20-story steel buildings and frames with different types of bracing, i.e., conventional, mega-scale and buckling-restrained bracing (BRB) were analyzed. Linear and modal push-over analyses were carried out. The results pointed out that Mega-Scale Bracing (MSB) system has significant superiority over the conventional bracing type. The MSB system is 25% more economic. Some other advantages of MSB include: up to 63% less drift ratio, up to 38% better performance in lateral displacement, up to 100% stiffer stories, and about 50% smaller uplift forces. Moreover, MSB equipped with BRB attests even a better seismic behavior in the aforementioned parameters.

Nonlinear dynamic behavior of Pamukcay Earthfill Dam

  • Terzi, Niyazi U.;Selcuk, Murat E.
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.83-100
    • /
    • 2015
  • Water and energy supplies are the key factors affecting the economic development and environmental improvement of Turkey. Given their important role and the fact that a large part of Turkey is in seismically active zones dams should be accurately analyzed since failure could have a serious impact on the local population environment and on a wider level could affect the economy. In this paper, a procedure is proposed for the static, slope stability, seepage and dynamic analysis of an earth dam and the Pamukcay embankment dam. The acceleration time history and maximum horizontal peak ground accelerations of the $Bing\ddot{o}l$ (2003) earthquake data was used based on Maximum Design Earthquake (MDE) data. Numerical analysis showed that, the Pamukcay dam is likely to experience moderate deformations during the design earthquake but will remain stable after the earthquake is applied. The result also indicated that, non-linear analysis capable of capturing dominant non-linear mechanism can be used to assess the stability of embankment dams.

A parametric study on seismic fragility analysis of RC buildings

  • Nagashree, B.K.;Ravi, Kumar C.M.;Venkat, Reddy D.
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.629-643
    • /
    • 2016
  • Among all the natural disasters, earthquakes are the most destructive calamities since they cause a plenty of injuries and economic losses leaving behind a series of signs of panic. The present study highlights the moment-curvature relationships for the structural elements such as beam and column elements and Non-Linear Static Pushover Analysis of RC frame structures since it is a very simplified procedure of non-linear static analysis. The highly popular model namely Mander's model and Kent and Park model are considered and then, seismic risk evaluation of RC building has been conducted using SAP 2000 version 17 treating uncertainty in strength as a parameter. From the obtained capacity and demand curves, the performance level of the structure has been defined. The seismic fragility curves were developed for the variations in the material strength and damage state threshold are calculated. Also the comparison of experimental and analytical results has been conducted.

Dynamic fracture instability in brittle materials: Insights from DEM simulations

  • Kou, Miaomiao;Han, Dongchen;Xiao, Congcong;Wang, Yunteng
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.65-75
    • /
    • 2019
  • In this article, the dynamic fracture instability characteristics, including dynamic crack propagation and crack branching, in PMMA brittle solids under dynamic loading are investigated using the discrete element method (DEM) simulations. The microscopic parameters in DEM are first calibrated using the comparison with the previous experimental results not only in the field of qualitative analysis, but also in the field of quantitative analysis. The calibrating process illustrates that the selected microscopic parameters in DEM are suitable to effectively and accurately simulate dynamic fracture process in PMMA brittle solids subjected to dynamic loads. The typical dynamic fracture behaviors of solids under dynamic loading are then reproduced by DEM. Compared with the previous experimental and numerical results, the present numerical results are in good agreement with the existing ones not only in the field of qualitative analysis, but also in the field of quantitative analysis. Furthermore, effects of dynamic loading magnitude, offset distance of the initial crack and initial crack length on dynamic fracture behaviors are numerically discussed.

The use of cost-benefit analysis in performance-based earthquake engineering of steel structures

  • Ravanshadnia, Hamidreza;Shakib, Hamzeh;Ansari, Mokhtar;Safiey, Amir
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.561-570
    • /
    • 2022
  • It is of great importance to be able to evaluate different structural systems not only based on their seismic performance but also considering their lifetime service costs. Many structural systems exist that can meet the engineering requirements for different performance levels; therefore, these systems shall be selected based on their economic costs over time. In this paper, two structural systems, including special steel moment-resisting and the ordinary concentric braced frames, are considered, which are designed to meet the three performance levels: Immediate Occupancy (IO), Life Safety (LS), Collapse Prevention (CP). The seismic behavior of these two systems is studied under three strong ground motions (i.e., Tabas, Bam, Kajour earthquake records) using the Perform3D package, and the incurred damages to the studied systems are examined at two hazard levels. Economic analyses were performed to determine the most economical structural system to meet the specified performance level requirements, considering the initial cost and costs associated with damages of an earthquake that occurred during their lifetime. In essence, the economic lifetime study results show that the special moment-resisting frames at IO and LS performance levels are at least 20% more economical than braced frames. The result of the study for these building systems with different heights designed for different performance levels also shows it is more economical from the perspective of long-term ownership of the property to design for higher performance levels even though the initial construction cost is higher.

Techno-economic Analysis of Power to Gas (P2G) Process for the Development of Optimum Business Model: Part 1 Methane Production

  • Roy, Partho Sarothi;Yoo, Young Don;Kim, Suhyun;Park, Chan Seung
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.182-192
    • /
    • 2022
  • This study provides an overview of the production costs of methane and hydrogen via water electrolysis-based hydrogen production followed by a methanation based methane production technology utilizing CO2 from external sources. The study shows a comparative way for economic optimization of green methane generation using excess free electricity from renewable sources. The study initially developed the overall process on the Aspen Plus simulation tool. Aspen Plus estimated the capital expenditure for most of the equipment except for the methanation reactor and electrolyzer. The capital expenditure, the operating expenditure and the feed cost were used in a discounted cash flow based economic model for the methane production cost estimation. The study compared different reactor configurations as well. The same model was also used for a hydrogen production cost estimation. The optimized economic model estimated a methane production cost of $11.22/mcf when the plant is operating for 4000 hr/year and electricity is available for zero cost. Furthermore, a hydrogen production cost of $2.45/GJ was obtained. A sensitivity analysis was performed for the methane production cost as the electrolyzer cost varies across different electrolyzer types. A sensitivity study was also performed for the changing electricity cost, the number of operation hours per year and the plant capacity. The estimated levelized cost of methane (LCOM) in this study was less than or comparable with the existing studies available in the literature.

Economic Evaluation of Air-side Economizer System for Data Center (데이터센터의 외기도입 냉방시스템 적용에 따른 경제성 평가)

  • Park, Seonghyun;Seo, Janghoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.4
    • /
    • pp.145-150
    • /
    • 2014
  • Many studies are being conducted with the aim of reducing the energy consumption in data centers, which are one of the highest consumers of energy. The use of an air-side economizer system that uses external air during intermediate and winter seasons is being considered for reducing the energy consumption of air conditioners. In this study, using the energy simulation, we evaluated the energy performance of a central chilled water cooling system and air-side economizer system in domestic data centers. Further, the cost-effectiveness of the air-side economizer was analyzed through Life-Cycle Cost Analysis. The results showed that with the use of air-side economizer systems, the energy costs increased as the applied filter grade increased; however, unlike existing central chilled water systems, it would break even within 2 years.

Analysis of composite steel-concrete beams using a refined high-order beam theory

  • Lezgy-Nazargah, M.;Kafi, L.
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1353-1368
    • /
    • 2015
  • A finite element model is presented for the analysis of composite steel-concrete beams based on a refined high-order theory. The employed theory satisfies all the kinematic and stress continuity conditions at the layer interfaces and considers effects of the transverse normal stress and transverse flexibility. The global displacement components, described by polynomial or combinations of polynomial and exponential expressions, are superposed on local ones chosen based on the layerwise or discrete-layer concepts. The present finite model does not need the incorporating any shear correction factor. Moreover, in the present $C^1$-continuous finite element model, the number of unknowns is independent of the number of layers. The proposed finite element model is validated by comparing the present results with those obtained from the three-dimensional (3D) finite element analysis. In addition to correctly predicting the distribution of all stress components of the composite steel-concrete beams, the proposed finite element model is computationally economic.

Assessing synoptic wind hazard in Australia utilising climate-simulated wind speeds

  • Sanabria, L.A.;Cechet, R.P.
    • Wind and Structures
    • /
    • v.15 no.2
    • /
    • pp.131-145
    • /
    • 2012
  • Severe wind is one of the major natural hazards in Australia. The component contributors to economic loss in Australia with regards to severe wind are tropical cyclones, thunderstorms and subtropical (synoptic) storms. Geoscience Australia's Risk and Impact Analysis Group (RIAG) is developing mathematical models to study a number of natural hazards including wind hazard. This paper discusses wind hazard under current and future climate conditions using RIAG's synoptic wind hazard model. This model can be used in non-cyclonic regions of Australia (Region A in the Australian-New Zealand Wind Loading Standard; AS/NZS 1170.2:2011) where the wind hazard is dominated by synoptic and thunderstorm gust winds.

Heat Integration and Economic Analysis of Dry Flue Gas Recirculation in a 500 MWe Oxy-coal Circulating Fluidized-bed (CFB) Power Plant with Ultra-supercritical Steam Cycle (순환 유동층 보일러와 초초임계 증기 사이클을 이용한 500 MWe급 순산소 화력발전소의 건식 재순환 흐름의 열 교환 및 경제성 분석)

  • Kim, Semie;Lim, Young-Il
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.60-67
    • /
    • 2021
  • This study presented techno-economic analysis of a 500 MWe oxy-coal power plant with CO2 capture. The power plant included a circulating fluidized-bed (CFB), ultra-supercritical steam turbine, flue gas conditioning (FGC), air separation unit (ASU), and CO2 processing unit (CPU). The dry flue gas recirculation (FGR) was used to control the combustion temperature of CFB. One FGR heat exchanger, one heat exchanger for N2 stream exiting ASU, and a heat recovery from CPU compressor were considered to enhance heat efficiency. The decrease in the temperature difference (ΔT) of the FGR heat exchanger that means the increase in heat recovery from flue gas enhanced the electricity and exergy efficiencies. The annual cost including the FGR heat exchanger and FGC cooling water was minimized at ΔT = 10 ℃, where the electricity efficiency, total capital cost, total production cost, and return on investment were 39%, 1371 M$, 90 M$, and 7%/y, respectively.