• 제목/요약/키워드: Techniques: interferometric

검색결과 55건 처리시간 0.025초

THE LONG BASELINE ARRAY

  • EDWARDS, PHILIP G.;PHILLIPS, CHRIS
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.659-661
    • /
    • 2015
  • The Long Baseline Array is an array of radio telescopes using the technique of Very Long Baseline Interferometry to achieve milli-arcsecond-scale angular resolution. The core telescopes are located in Australia, with telescopes in New Zealand and South Africa also participating regularly. In this paper the capabilities of the Long Baseline Array are described, and examples of the science undertaken with the array are given.

The First Multi-Frequency Synthesis Space-VLBI Observations of 0059+581 with Radioastron

  • Alexey Rudnitskiy;Mikhail Shchurov;Taehyun Jung;Marcello Giroletti
    • 천문학회지
    • /
    • 제56권1호
    • /
    • pp.91-96
    • /
    • 2023
  • In this paper, we describe the first multi-frequency synthesis observations of blazar 0059+581 made with the Radioastron space-ground interferometer in conjunction with the Korean VLBI Network (KVN), Medicina and Torun ground telescopes. We conducted these observations to assess the spaceground interferometer multi-frequency mode capability for the first time.

Oceanic Variables extracted from Along-Track Interferometric SAR Data

  • Kim, Duk-Jin;Moon, Wooil-M.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.429-434
    • /
    • 2002
  • The Synthetic Aperture Radar (SAR) data are considered to contain the greatest amount of information among various microwave techniques developed for measuring ocean variables from aircraft or satellites. They have the potential of measuring wavelength, wave direction and wave height of the ocean waves. But, it is difficult to retrieve significant ocean wave heights and surface current from conventional SAR data, since the imaging mechanism of ocean waves by a SAR is determined by the three basic modulation processes arise through the tilt modulation, hydrodynamic modulation and velocity bunching which are poorly known functions. Along-Track Interferometric (ATI) SAR systems can directly detect the Doppler shift associated with each pixel of a SAR image and have been used to estimate wave fields and surface currents. However, the Doppler shift is not simply proportional to the component of the mean surface current. It includes also contributions associated with the phase velocity of the Brags waves and orbital motions of all ocean waves that are longer than Brags waves. In this paper, we have developed a new method for extracting the surface current vector using multiple-frequency (L- & C-band) ATI SAR data, and have generated surface wave height information.

  • PDF

SPECIAL CONSIDERATION ON THE RADARSAT REPEAT-PASS SAR INTERFEROMETRY

  • Kim, Sang-Wan;Won, Joong-Sun;Moon, Wooil-M.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.474-478
    • /
    • 1999
  • SAR interferometry (InSAR) using the space-borne Synthetic Aperture Radar (SAR) have recently become one of the most effective tools monitoring surface changes caused by landslides, earthquakes, subsidences or volcanic eruption. This study focuses on examining the feasibility of InSAR using the RADARSAT data. Although the RABARSAT SAR with its high resolution and variable incidence angle has several advantages for repeat-pass InSAR, it has two key limitations: first, the orbit is not precisely known; and second, RADARSAT's 24-day repeat pass interval is not very favourable for retaining useful coherence. In this study, two pairs of RADARSAT data in the Nahanni area, NWT, Canada have been tested. We will discuss about the special consideration required on the interferometric processing steps specifically for RADARSAT data including image co-registration, spectral filtering in both azimuth and range, estimation of the interferometric baseline, and correction of the interferogram with respect to the "flat earth" phase contribution. Preliminary results can be summarized as: i) the properly designed azimuth filter based upon the antenna characteristic improves coherence considerably if difference in Doppler centroid of the two images is relatively large; ii) the co-registration process combined by fringe spectrum and amplitude cross-correlation techniques results in optimal matching; iii) the baseline is not always possible to be estimated from the definitive orbit information.

  • PDF

음향광변조기를 이용한 고분해능의 헤테로다인 간섭식 열팽창 측정기술 (High resolution heterodyne interferometric technique with AOM for measuring the thermal expansion)

  • 최병일;이상현;김종철;임동건
    • 한국광학회지
    • /
    • 제13권6호
    • /
    • pp.530-536
    • /
    • 2002
  • 열팽창계수의 정확한 측정은 재료과학이나 공업기술 분야에서 가장 중요한 요구량 중의 하나이다. 음향광변조기(AOM)를 이용한 고분해능 간섭식 열팽창계를 제작하여 성능검사를 하였다. 이 계는 이중광로 헤테로다인 간섭계와 복사열 전기로로 구성되어, 정밀한 변위의 측정과 시료의 신속한 가열 및 냉각이 가능토록 하였다. 또한 레이저의 주파수 안정화를 위하여 2차 맥놀이 주파수를 이용한 3종모드 안정화 He-Ne 레이저를 제작하였으며, 이때의 주파수 안정도는 5$\times$$10^{-9}$이었다. 제작된 계의 길이 측정은 실온에서 1100k온도영역에서 나노미터 정도의 정밀도를 주었다.

광위상 간섭을 이용한 이송축의 운동오차 실시간 보상 (Real-Time Correction of Movement Errors of Machine Axis by Twyman-Green Interferometry)

  • 이형석;김승우
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3115-3123
    • /
    • 1993
  • This paper presents a real-time correction method of the movemont errors of a translatory precision machine axis. This method is a null-balances technique in which two plane mirrors are used to generate an interferometric fringe pattern utilizing the optical principles of TwymanGreen interferometry. One mirror is fixed on a reference frame, while the other is placed on the machine axis being supported by three piezoelectric actuators. From the fringe pattern, one translatory and two rotational error components of the machine axis are simultaneously detected by using CCD camera vision and image processing techniques. These errors are then independently suppressed by activating the peizoelectric actuators by real-time feedback control while the machine axis is moving. Experimental results demonstrate that a machine axis can be controlled with movement errors less than 10 nm in vertical straightness, 0.1 arcsec in pitch, and 0.06 arcsec in roll for 50mm travel by adopting the real-time correction method.

IMAGING CAPABILITY OF THE KVN AND VERA ARRAYS (KaVA)

  • NIINUMA, KOTARO;LEE, SANG-SUNG;KINO, MOTOKI;SOHN, BON WON
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.637-639
    • /
    • 2015
  • The Korean very-long-baseline interferometry (VLBI) network (KVN) and VLBI Exploration of Radio Astrometry (VERA) Array (KaVA) is the first international VLBI array dedicated to high-frequency (23 GHz (K-band) and 43 GHz (Q-band)) observations in East Asia. To evaluate the imagine capability of KaVA, we performed imaging observations of three bright active galactic nuclei (AGNs) known for their complex morphologies: 4C 39.25, 3C 273, and M87 by KaVA at K-/Q-band. Our KaVA images reveal extended outflows with complex substructure such as knots and limb brightening, in agreement with previous observations by other VLBI facilities. Angular resolutions are better than 1.4 and 0.8 milliarcsecond (max) at K-/Q-band, respectively. KaVA achieves a high dynamic range of ~1000, more than three times the value achieved by VERA. We conclude that KaVA is a powerful array with a great potential for the study of AGN outflows, at least comparable to the best existing radio interferometric arrays.

Validation of DEM Derived from ERS Tandem Images Using GPS Techniques

  • 이인수;장싱정;지린린
    • 대한공간정보학회지
    • /
    • 제13권1호
    • /
    • pp.63-69
    • /
    • 2005
  • InSAR(Interferometric Synthetic Aperture Radar)는 급속히 발진하고 있는 기술이며 지표면의 수치지형모델 제작과 토지이용 분류뿐만 아니라, 지진, 화신, 지반침하와 빙하흐름의 모니터링과 같은 다양한 응용분야 적용은 그것의 장점을 강화시켜 주고 있다. InSAR는 원격탐측 기술의 한 부류이므로, 위성위치와 자세, 대기, 그리고 기타 요소에 의한 다양한 오차원인을 가지고 있으므로, 이 시스템의 정확도 검증, 특별히 SAR 영상으로부터 제작된 수치지형모델에 대해서는 중요하다. 본 연구에서는 RTK GPS와 Kinematic GPS 측위가 InSAR 기술로 제작된 수치지형모델의검증 도구로 이용되었다. 그 결과로서, Kinematic GPS는 실험지역에서 RTK GPS보다 많은 관측값을 얻을 수 있었지만, 안테나 주위 나무 등에 의한 위성추적 문제와 통신거리에 따른 기준국과 이동국사이의 자료전송 문제 등이 여전히 시급히 해결해야 할 과제로 나타났다.

  • PDF

Applications of Digital Holography in Biomedical Microscopy

  • Kim, Myung-K.
    • Journal of the Optical Society of Korea
    • /
    • 제14권2호
    • /
    • pp.77-89
    • /
    • 2010
  • Digital holography (DH) is a potentially disruptive new technology for many areas of imaging science, especially in microscopy and metrology. DH offers a number of significant advantages such as the ability to acquire holograms rapidly, availability of complete amplitude and phase information of the optical field, and versatility of the interferometric and image processing techniques. This article provides a review of the digital holography, with an emphasis on its applications in biomedical microscopy. The quantitative phase microscopy by DH is described including some of the special techniques such as optical phase unwrapping and holography of total internal reflection. Tomographic imaging by digital interference holography (DIH) and related methods is described, as well as its applications in ophthalmic imaging and in biometry. Holographic manipulation and monitoring of cells and cellular components is another exciting new area of research. We discuss some of the current issues, trends, and potentials.

SPATIO-SPECTRAL MAXIMUM ENTROPY METHOD: II. SOLAR MICROWAVE IMAGING SPECTROSCOPY

  • Bong, Su-Chan;Lee, Jeong-Woo;Gary Dale E.;Yun Hong-Sik;Chae Jong-Chul
    • 천문학회지
    • /
    • 제38권4호
    • /
    • pp.445-462
    • /
    • 2005
  • In a companion paper, we have presented so-called Spatio-Spectral Maximum Entropy Method (SSMEM) particularly designed for Fourier-Transform imaging over a wide spectral range. The SSMEM allows simultaneous acquisition of both spectral and spatial information and we consider it most suitable for imaging spectroscopy of solar microwave emission. In this paper, we run the SSMEM for a realistic model of solar microwave radiation and a model array resembling the Owens Valley Solar Array in order to identify and resolve possible issues in the application of the SSMEM to solar microwave imaging spectroscopy. We mainly concern ourselves with issues as to how the frequency dependent noise in the data and frequency-dependent variations of source size and background flux will affect the result of imaging spectroscopy under the SSMEM. We also test the capability of the SSMEM against other conventional techniques, CLEAN and MEM.