• Title/Summary/Keyword: Technique of design and construction

Search Result 700, Processing Time 0.03 seconds

Design and Construction of Integral Abutment Bridge (일체 구조형식 교량의 설계 및 시공기법 연구)

  • 이성우;나정우;조남훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.121-128
    • /
    • 1996
  • In this study design and construction technique for joint-less integral abutment for short to mid span bridges was developed. Expansion of superstructure due to thermal effect was absorbed in the flexible pile-type abutment in stead of expansion joint in the conventional bridges. Design method for pile subject to vertical and horizontal force was proposed. Backfill, approach slab and details of its connection joint with pavement was also proposed.

  • PDF

Development of Construction Cost Analysis Process Based on Structural Building Information Modeling (구조BIM기반 공사비 상세분석 프로세스 구축)

  • Lee, Seung-Il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.237-238
    • /
    • 2012
  • As a way to improve productivity and integrated project delivery in construction industry, BIM(building Information Modeling) using IT technique is being studied and applied recently. S-BIM application Process was established that enable efficient work through Structural BIM detailed Model in consideration of the collaboration among relevant fields. This study has the objective applying S-BIM technique to enable effective Cost Analysis in initial design phase and presenting the method for practical works using Construction Cost Analysis Process based on S-BIM.

  • PDF

Automated Optimum Design Program for Steel Box Girder Bridges (강상자형교의 자동화 최적설계 프로그램)

  • Cho, Hyo-Nam;Chung, Jee-Sung;Min, Dae-Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.475-485
    • /
    • 2000
  • In this study, an automated optimum design program for steel box girder bridges has been developed for the optimum design of composite steel box girder bridges. The design constraints required for the optimum design of steel box girder bridges are based on the Korean standard bridge specification. Considering characteristics of steel box girder bridges, several approximation techniques, such as artificial constraint deletion, variable linking and stress reanalysis technique etc. are also introduced to enhance the efficiency of optimization. The developed program is mainly composed of major sub-system modules including structural analysis module using commercial structural analysis program such as RM-SPACEFRAME, optimum design module, pre-process module for friendly user input, and post-processor module for office automation. In addition, in order to demonstrate the efficiency and applicability of the developed optimum design program for steel box girder bridges, a few numerical examples are applied. Based on the results of the application, it may be stated that the automatic optimum design program developed in this study can be a prototype model for the developement of optimum design program for other type of bridge.

  • PDF

A study on the improvement of the digging load capacity of an excavator by CAD technique (CAD에 의한 엑스카 베이터(excavator)의 굴삭능력 향상에 관한 연구)

  • 박찬기;이장무
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.24-34
    • /
    • 1982
  • In order to improve the digging load capacity of a domestic excavator model. computer aided design(CAD) technique was applied to the optimum design of the excavator boom. From this study, the digging load capacity of both the bucket cylinder and the dipperstick cylinder could be made about same and the overall digging load capacity could be increased by about 50%, also, the computer program package developed in this study can be flexibly applied to the design of other construction machines by changing and/or adding a few subprograms and the input data.

  • PDF

AUTOMATED HAZARD IDENTIFICATION FRAMEWORK FOR THE PROACTIVE CONSIDERATION OF CONSTRUCTION SAFETY

  • JunHyuk Kwon;Byungil Kim;SangHyun Lee;Hyoungkwan Kim
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.60-65
    • /
    • 2013
  • Introducing the concept of construction safety in the design/engineering phase can improve the efficiency and effectiveness of safety management on construction sites. In this sense, further improvements for safety can be made in the design/engineering phase through the development of (1) an automated hazard identification process that is little dependent on user knowledge, (2) an automated construction schedule generation to accommodate varying hazard information over time, and (3) a visual representation of the results that is easy to understand. In this paper, we formulate an automated hazard identification framework for construction safety by extracting hazard information from related regulations to eliminate human interventions, and by utilizing a visualization technique in order to enhance users' understanding on hazard information. First, the hazard information is automatically extracted from textual safety and health regulations (i.e., Occupational Safety Health Administration (OSHA) Standards) by using natural language processing (NLP) techniques without users' interpretations. Next, scheduling and sequencing of the construction activities are automatically generated with regard to the 3D building model. Then, the extracted hazard information is integrated into the geometry data of construction elements in the industry foundation class (IFC) building model using a conformity-checking algorithm within the open source 3D computer graphics software. Preliminary results demonstrate that this approach is advantageous in that it can be used in the design/engineering phases of construction without the manual interpretation of safety experts, facilitating the designers' and engineers' proactive consideration for improving safety management.

  • PDF

Construction Design 3D Modeling in Smart Phone (스마트폰에서 건축설계 3D 모델링)

  • Han, Jung-Soo
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.333-338
    • /
    • 2013
  • This paper was aimed to represent 3D design process to enable the construction design in a smart phone. The construction design was done in pattern units, by composing construction materials in components first, followed by assembling the components in pattern. Four types of views were constructed and each function was described to enable construction design in mobile environment. In addition, the skills needed for each view were described in detail through the libraries used. The process and calculation results were shown in mobiles how each view performed its function and behave worked together with a complementary way based on this implementation technique.

Development of Optimization Design Programs for Composite Beams (합성보의 최적설계 프로그램 개발)

  • 구민세;김긍환;유영찬
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.91-94
    • /
    • 1990
  • The object of this study is to develop computer programs with which ordinary engineers can analyse or design steel-concrete composite teams using optimization technique. Various design ana construction techniques which could maximize load carrying capacities and control concrete tension cracks effectively are studied and included in the programs. Analysis results show that proposed construction techniques can reduce steel weight by about 10%∼20% compared with ordinary composite beam. Concrete tensile stresses can also be controlled affectively by the suggested techniques.

  • PDF

Review of Reverse Design Process for Freeform Envelope Using 3D Scanning (비정형 건축물의 외장재 제작 시공을 위한 3D 스캐닝에 의한 역 설계 프로세스 검토)

  • Kim, Sung-Jin;Park, Sung-Jin;Ryu, Hanguk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.17-18
    • /
    • 2015
  • In manufacturing industry, image scanning technique has made enormous progress in past decades. 3D models have been also very important to continuously monitor the related spatial information for freeform buildings. The process of shape making of 3D scanning is as follows: mesh surface segmentation, NURBS surface generation, and parametric solid model generation. We will review the process and applying process. Especially in the construction industry, 3D data collection by laser scanning has become an high quality 3D models. Therefore, in this research, we have an effort to review construction of reverse design process for freeform envelope using 3D scanning. The technology enables many 3D shape engineering and design parameterization of reverse engineering in the construction site.

  • PDF

The conditions and principles of the 'Bionik' space design on the basis of the consilient horizon of biology and architecture (생물학과 건축의 통섭적 지평에 기초한 비오닉 공간디자인의 조건 및 원리)

  • Lee, Ran-Pyo
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.5
    • /
    • pp.68-77
    • /
    • 2011
  • In this research it is concentrated first of all on the attempts to reconstruct the historical context of the idea for the space design based on the natural construction and to re-appropriate il critically to the present context. Sequentially in the areas of philosophy, biology, neuroscience, and architecture it has been variously discussed on the problems about the synthesis of biology and techniques. In the context of the consilience of biology and technique Werner Nachtigall, who has intended to shed light on the morphological principles in the natural construction, founded the 'Bionik', which is different from the bionics or the biomechanics that are oriented to the imitation of natural forms. The space design that is on the basis of the Bionik treats organisms as a functional whole. Therefore the Bionik space design follows two kinds of principle such as the principle of analogy and the principle of optimization. After all the understanding of the consilience of nature and technique for Nachtigall and Bionik designers tends toward the explication of the complex process in which the human perceptions, the environment, and the phenomenal techniques are united together, and this complex process is associated with the space design based on the Bionik.