• Title/Summary/Keyword: Tea plant

Search Result 310, Processing Time 0.022 seconds

Occurrence of Plant-Parasitic Nematodes on Ornamental Foliage Plants, Citrus Orchards, and Tea Plantations in Korea (국내 관엽식물 및 작물재배지의 식물기생선충 발생 조사)

  • Sungchan Huh;Namsook Park;Yongchul Kim;Insoo Choi
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.459-463
    • /
    • 2023
  • This study was conducted to investigate the plant-parasitic nematodes of ornamental foliage plants, citrus orchards, and tea plantations from July to December 2022. As a result of the investigation of plant-parasitic nematodes in 415 foliage plants, root-lesion nematodes were detected most frequently, followed by root-knot nematodes, pin nematodes, and other nematodes. In tea plantations, spiral nematodes, cyst nematodes, and root-knot nematodes were detected. Citrus nematodes, ring nematodes, and root-knot nematodes were discovered in citrus orchards. In foliage plants, tea plantations, and citrus orchards, the detection rate of plant-parasitic nematodes was not high, but root-lesion nematodes were detected. Therefore, it is necessary to apply appropriate control methods to manage root-lesion nematodes during the cultivation of foliage, tea, and citrus plants.

Genetic Diversity among Tea (Camellia sinensis) Accessions Based on Random Amplified Polymorphic DNA (RAPD) Patterns

  • Lyu, Jae-Il;Lee, Sun-Ha;Lim, Keun-Chul;Kim, Gil-Ja;Yang, Deok-Chun;Bae, Chang-Hyu
    • Plant Resources
    • /
    • v.6 no.3
    • /
    • pp.195-204
    • /
    • 2003
  • Genetic diversity of 45 tea accessions from Korea, Japan, China and Taiwan was investigated by using RAPD analysis. Out of the eighty primers screened, twenty primers generated 99 polymorphic bands with a polymorphic rate 87.0%. The size of the amplified fragments ranged from about 3,138 bp to 520 bp. By cluster analysis, all of the 45 accessions can be grouped into five groups. Over 90% of the 32 Korean accessions belonged to group II, III, IV and V. Moreover, newly developed Korean cultivars (accession no. 13, 14 and 15) belonged to very different group compared with any other Korean accessions. Among the Korean accessions, the minimum genetic similarity 0.500 was obtained between accession no. 17 and 37 and the largest genetic similarity 0.912 between no. 20 and 21.

  • PDF

Physiological and Pharmacological Activites of Nutraceutical Tea by Leaves and Flowers of Domestic Camellia(Camellia japonica)

  • Lee, Sook-Young;Cha, Young-Ju;Lee, Jang-Won;Hwang, Eun-Ju;Kwon, Su-Jung;Cho, Su-In
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.10b
    • /
    • pp.48-49
    • /
    • 2003
  • This project was conducted to development several camellia tea mixed herb teas having any physiological effects. Leaves of tea tree contain many compounds, such as polysaccharides, volatile oils, vitamins, minerals, purines, alkaloids(eg. caffeine) and polyphenols(catechins and flavonoids). Although all three tea types(green, oolonr and black) have antibacterial and free radical capturing(antioxidizing) activities, the efficacy decreases substantially the darker the variety of tea is. This is due to lower contents of anti-oxidizing polyphenols remaining in the leaves. Unlike tea tree(Camellia sinensis), the biochemical features and effects of camellia(Camellia japonica) are not well known. Fresh mature leaf of sasanqua camellia(C. sasanqua), roasted young leaf tea(C. japonica) and fresh mature leaf and bark of camellia had high antibacterial activity against P. vulgaris and B. subtilis. In antifungal activity bioassay, young leaf roasted teas of camellia and sasanqua camellia had high activity against C. albicans and T. beigelil. Plant extracts from Camelia japonica had higher inhibitory activity against fungi than against bacteria. In cytotoxic effect against human acute myelogenous leukaemia cell extracts including fresh leaf(200$\mu\textrm{g}$/m1), bark(230$\mu\textrm{g}$/ml) and flower tea (320$\mu\textrm{g}$/m1)inhibited growth of AML cells.(중략)

  • PDF

Investigation of Antifungal Activity for Plant Disease Control by Compost Teas Fermented under Different Temperatures (식물병 관리를 위해 다양한 온도조건에서 발효한 퇴비차의 항진균 활동에 관한 연구)

  • Tateda, Masafumi;Yamada, Kanae;Kim, Youngchul;Sato, Yukio
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.280-284
    • /
    • 2008
  • Efficacy of antifungal activity on plant pathogens by compost teas fermented under different temperatures was studied. Compost teas are recently chosen by agricultural producers for the better method of controlling plant diseases under increase of public consciousness against use of chemicals for controlling the diseases. Compost tea has been intensively studied; however, understanding of compost tea is still not well developed, and temperature influence during fermentation of compost tea on its antifungal activity has not been investigated. In this study, antifungal activities of compost teas fermented at 10, 20, 30, and $40^{\circ}C$ against selected 10 pathogens were observed. From the results, antifungal activities of compost teas at 20 and $30^{\circ}C$ of fermentation-temperatures showed the strongest while the weakest activity was observed with the compost tea at $10^{\circ}C$. Change of the activity by the fermentation-temperature apparently implied that microbes in the compost tea were strongly involved in its antifungal activity.

Phenolic plant extracts are additive in their effects against in vitro ruminal methane and ammonia formation

  • Sinz, Susanne;Marquardt, Svenja;Soliva, Carla R.;Braun, Ueli;Liesegang, Annette;Kreuzer, Michael
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.966-976
    • /
    • 2019
  • Objective: The methane mitigating potential of various plant-based polyphenol sources is known, but effects of combinations have rarely been tested. The aim of the present study was to determine whether binary and 3-way combinations of such phenol sources affect ruminal fermentation less, similar or more intensively than separate applications. Methods: The extracts used were from Acacia mearnsii bark (acacia), Vitis vinifera (grape) seed, Camellia sinensis leaves (green tea), Uncaria gambir leaves (gambier), Vaccinium macrocarpon berries (cranberry), Fagopyrum esculentum seed (buckwheat), and Ginkgo biloba leaves (ginkgo). All extracts were tested using the Hohenheim gas test. This was done alone at 5% of dry matter (DM). Acacia was also combined with all other single extracts at 5% of DM each, and with two other phenol sources (all possible combinations) at 2.5%+2.5% of DM. Results: Methane formation was reduced by 7% to 9% by acacia, grape seed and green tea and, in addition, by most extract combinations with acacia. Grape seed and green tea alone and in combination with acacia also reduced methane proportion of total gas to the same degree. The extracts of buckwheat and gingko were poor in phenols and promoted ruminal fermentation. All treatments except green tea alone lowered ammonia concentration by up to 23%, and the binary combinations were more effective as acacia alone. With three extracts, linear effects were found with total gas and methane formation, while with ammonia and other traits linear effects were rare. Conclusion: The study identified methane and ammonia mitigating potential of various phenolic plant extracts and showed a number of additive and some non-linear effects of combinations of extracts. Further studies, especially in live animals, should concentrate on combinations of extracts from grape seed, green tea leaves Land acacia bark and determine the ideal dosages of such combinations for the purpose of methane mitigation.

The Nutrients and Microbial Properties of Animal Manure and Spent Mushroom Compost Tea and the Effect of Growth of Lettuce (Lactuca sativa L.) (가축분뇨와 폐버섯 퇴비차의 양분 및 미생물적 특성과 상추의 생육에 미치는 영향)

  • Ryoo, Jong-Won
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.4
    • /
    • pp.589-602
    • /
    • 2011
  • In this study, experiments were conducted to determine the effect of different compost teas on plant growth reponses and yield of leaf lettuce. Compost tea is a liquid extract of compost obtained by mixing compost and water for a defined period of time. The pig manure and spent mushroom compost were made by steeping compost in water. Compost tea was aerated from 24 hours and molasses and kelp were added as supplements. The four types of compost were tested growth of lettuce. EC of animal manure compost tea was higher than that of spent mushroom compost tea. Mineral nutrients were significantly higher in animal manure compost tea compared with spent mushroom compost tea. Compost tea contains nutrient and a ranges of different organisms. The beneficial fungi and actinomycetes were prominent in a spent mushroom compost tea. Compost tea from animal manure had the higher numbers of total bacteria. The actinomycetes densities were high in spent mushroom compost tea. But actinomycetes were not founded in animal manure compost tea. The growth characteristics of lettuce in animal manure compost tea were higher than those of spent mushroom compost tea. And also SPAD value in leaf was high in plot treated with animal manure compost tea. The fresh yield of lettuce in animal compost tea was higher by 181% that of control plot. The effect of compost tea on growth of lettuce was largely attributable to mineral nutrient.

Occurrence of Brown Blight of Tea Plant Caused by Pseudomonas syringae pv. theae in Korea (Pseudomonas syringae pv. theae에 의한 차나무 갈색마름병 발생)

  • Choi, Jae-Eul;Cha, Sun-Kyung;Ryuk, Jin-Ah;Choi, Chun-Hwan;Nou, Ill-Sup
    • Research in Plant Disease
    • /
    • v.9 no.4
    • /
    • pp.213-216
    • /
    • 2003
  • A bacterial disease of tea plants(Camellia sinensis L.) was found in the graftage nursery grown under vinyl house conditions in Suncheon city, Korea, in spring of 2002. The primary symptoms of the disease include small, water-soaked and dark brown spot development on the young leaves. This spot gradually increases in size, especially taking on elongate shape along the midrib or vein of the leaf, and then turns black. The diseased leaves were defoliated easily. Ten strains were isolated from the infected leaf. Inoculation on tea leaf with these isolates produced the same symptoms of naturally infected plants. On the basis of stain reactions, morphological characterization, colony pattern, physiological and biochemical reactions, the bacterium was identified as Pseudomonas syringae pv. theae. This is the first report of brown blight of tea plant in Korea.

Field Sanitation and Foliar Application of Streptomyces padanus PMS-702 for the Control of Rice Sheath Blight

  • Yang, Chia-Jung;Huang, Tzu-Pi;Huang, Jenn-Wen
    • The Plant Pathology Journal
    • /
    • v.37 no.1
    • /
    • pp.57-71
    • /
    • 2021
  • Rice sheath blight (ShB), caused by Rhizoctonia solani Kühn AG1-IA, is one of the destructive rice diseases worldwide. The aims of this study were to develop biocontrol strategies focusing on field sanitation and foliar application with a biocontrol agent for ShB management. Streptomyces padanus PMS-702 showed a great antagonistic activity against R. solani. Fungichromin produced by S. padanus PMS-702, at 3.07 mg/l inhibited 50% mycelial growth, caused leakage of cytoplasm, and inhibited the formation of infection structures of R. solani. Fungichromin could reach to 802 mg/l when S. padanus PMS-702 was cultured in MACC broth for 6 days. Addition of 0.5% S. padanus PMS-702 broth into soil decreased the survival rate of the pathogen compared to the control. Soil amended with 0.5% S. padanus broth and 0.5% tea seed pomace resulted in the death of R. solani mycelia in the infested rice straws, and the germination of sclerotia was inhibited 21 days after treatment. Greenhouse trials revealed that S. padanus cultured in soybean meal-glucose (SMGC-2) medium after mixing with different surfactants could enhance its efficacy for inhibiting the pathogen. Of six surfactants tested, the addition of 2% tea saponin was the most effective in suppressing the pathogen. S. padanus broth after being fermented in SMGC-2, mixed with 2% tea saponin, diluted 100 fold, and sprayed onto rice plants significantly reduced ShB disease severity. Thus, S. padanus PMS-702 is an effective biocontrol agent. The efficacy of S. padanus PMS-702 for disease control could be improved through formulation.

Control of Gray Blight of Tea Plants Using a Biofungicide (미생물제제를 이용한 차나무 겹둥근무늬병의 방제)

  • Kim, Gyoung-Hee;Lim, Myoung-Taek;Hur, Jae-Seoun;Yum, Kyu-Kim;Koh, Young-Jin
    • Research in Plant Disease
    • /
    • v.14 no.1
    • /
    • pp.37-42
    • /
    • 2008
  • Bacillus subtilis BD0310 isolated from tea leaves was used for the development of a biofungicide against Pestitalotiopsis longiseta causing gray blight of tea plants. After mass culture of the antagonistic bacteria, the biofungicide formulated as a suspension concentrate was evaluated for its control efficacy against the gray blight of tea plant in a greenhouse and a tea plantation, respectively. Spray of the biofungicide 2 days before inoculation of P. longiseta inhibited more efficiently the development of gray blight compared with spray of the biofungicide 2 days after inoculation of the pathogen onto the leaves of tea plants in a greenhouse. In the field investigation under application of the biofungicide in 2005 and 2006, control efficiencies increased according to the number of spray of the biofungicide. Control efficiencies of the biofungicide were 52.4%, 66.7%, 71.4% and 85.7% against gray blight in 4 times spray of the biofungicide alone at 7 days interval, 6 times spray of the biofungicide alone at 7 days interval, 2 times alternate spray of biofungicide and chemical fungicide at 7 days interval and 4 times spray of chemical fungicide alone at 7 days interval, respectively. Therefore, the alternate application of the biofungicide and chemical fungicide at 7 days interval can increase the control efficiency with reduction of the amount of chemical fungicides and the number of spray for the control of gray blight of tea plants in the field.

Photoprotection effect of Pu'er tea and Curcuma longa L. extracts against UV and blue lights

  • Doyeong Son;Ji-Su Jun;KwangWon Hong
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.106-113
    • /
    • 2023
  • Plant extracts have been studied due to their potential as photoprotective agents against UV and blue light exposure. Previous studies have revealed that several plant extracts have photoprotection capacities and synergistic effects with synthetic products. However, such results for pu'er tea and Curcuma longa L. have not been reported yet for a cosmetic formulation. Thus, the objective of this study was to evaluate photoprotection capacities of pu'er tea and C. longa L. extracts for a sunscreen compound. The pu'er tea extract improved sun protection factor value of 2-ethyl-hexyl methoxycinnamate (a synthetic sunscreen compound) by 46% and showed a high antioxidant capability that could help skin recover from photo-induced damage. C. longa L. extract also showed a potential to protect skin from blue light-induced damage because it not only had a maximum absorption peak at the blue light range, but also protected human fibroblasts from blue light-induced damage. The addition of both extracts shifted the critical wavelength of 2-ethyl-hexyl methoxycinnamate from 350 nm to 386 nm, giving it a broad-spectrum feature. Thus, pu'er tea and C. longa L. extracts may enhance the photoprotection ability of synthetic sunscreen products.