• 제목/요약/키워드: Tautomycetin

검색결과 4건 처리시간 0.022초

면역억제제 Tautomycetin을 생산하는 방선균의 고체배지 pH에 따른 항진균 활성 (Solid Medium pH-Dependent Antifungal Activity of Streptomyces sp. Producing an Immunosuppressant, Tautomycetin)

  • 허윤아;최시선;장용근;홍순광;김응수
    • 한국미생물·생명공학회지
    • /
    • 제35권1호
    • /
    • pp.26-29
    • /
    • 2007
  • Tautomycetin(TMC)은 국내 토양에서 분리된 방선균(Streptomyces sp. CK4412)로부터 생합성 되는 항진균성 2차 대사산물로서, Cyclosporin및 FK506과 같은 기존의 면역억제제보다 작용 메카니즘 및 효능이 훨씬 탁월한 선형의 폴리케타이드계 면역억제 화합물이다. 고체배지의 pH변화와 TMC생산성과의 상관관계를 규명하기 위하여, 방선균 CK4412를 다양한 pH조건에서 배양하면서 항진균 활성 및 TMC생산량을 비교분석 하였다. 고체배지의 pH를 산성조건(pH 4-5)으로 유지하여 방선균 CK4412 균주를 배양할 경우, 중성 pH 조건에서 배양한 경우보다 훨씬 탁월한 항진균 활성 및 TMC생산성이 관찰되었다. 본 연구결과는 대표적인 방선균 S. coelicolor에서 입증된 pH-shock게 의한 2차대사산물의 생산성 증대효과가 대사산물의 특성과 균주가 전혀 다른 TMC 생산균주 CK4412에서도 관찰됨을 입증함으로써, pH조절에 의한 다양한 종류의 방선균 유래 유용 생리활성물질의 생산성 증대 전략을 제시하고 있다.

Differential Effects of Tautomycetin and Its Derivatives on Protein Phosphatase Inhibition, Immunosuppressive Function and Antitumor Activity

  • Niu, Mingshan;Sun, Yan;Liu, Bo;Tang, Li;Qiu, Rongguo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권2호
    • /
    • pp.145-151
    • /
    • 2012
  • In the present work, we studied the structure-activity relationship (SAR) of tautomycetin (TMC) and its derivatives. Further, we demonstrated the correlation between the immunosuppressive fuction, anticancer activity and protein phosphatase type 1 (PP1) inhibition of TMC and its derivatives. We have prepared some TMC derivatives via combinatorial biosynthesis, isolation from fermentation broth or chemical degradation of TMC. We found that the immunosuppressive activity was correlated with anticancer activity for TMC and its analog compounds, indicating that TMC may home at the same targets for its immunosuppressive and anticancer activities. Interestingly, TMC-F1, TMC-D1 and TMC-D2 all retained significant, albeit reduced PP1 inhibitory activity compared to TMC. However, only TMC-D2 showed immunosuppressive and anticancer activities in studies carried out in cell lines. Moreover, TMC-Chain did not show any significant inhibitory activity towards PP1 but showed strong growth inhibitory effect. This observation implicates that the maleic anhydride moiety of TMC is critical for its phosphatase inhibitory activity whereas the C1-C18 moiety of TMC is essential for the inhibition of tumor cell proliferation. Furthermore, we measured $in$ $vivo$ phosphatase activities of PP1 in MCF-7 cell extracts treated with TMC and its related compounds, and the results indicate that the cytotoxicity of TMC doesn't correlate with its $in$ $vivo$ PP1 inhibition activity. Taken together, our study suggests that the immunosuppressive and anticancer activities of TMC are not due to the inhibition of PP1. Our results provide a novel insight for the elucidation of the underlying molecular mechanisms of TMC's important biological functions.

Strain Improvement and Genetic Characterization of Tautomycetin Biosynthesis in Streptomyces spp.

  • Choi, Si-Sun;Kim, Myung-Gun;Kim, Eung-Soo
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVI)
    • /
    • pp.420-422
    • /
    • 2005
  • TMC (Tautomycetin) is a liner polyketide immunosuppressive antifungal compound produced by Streptomyces spp. Inhibition of T cell proliferation with TMC was observed highly efficient at 100-fold lower than those needed to achieve maximal inhibition with cyclosporin A. To elucidate the biosynthetic pathway of TMC, a genomic DNA library was constructed using a E. coil-Streptomyces shuttle cosmid vector, pOJ446. The DNA libraries were screened by colony blot hybridization using several polyketide ${\beta}-ketosynthase$ (KS) probes amplified from TMC-producing Streptomyces genomic DNA using polymerase chain reaction (PCR), of which the degenerate primers were designed based on the highly conserved sequences present in KS domains of various type I polyketide synthase genes in Streptomyces species. This library construction and screening approach led to the isolation of several positive cosmid clones representing type I polyketide biosynthetic gene clusters. In addition, a Streptomyces regulatory gene called afsR2 (a global regulatory gene stimulating antibiotic production in both S. coelicolor and S. lividans) was successfully integrated into the TMC-producing Streptomyces chromosome via E. coil-Streptomyces heterologous conjugation mehtod. The more detailed results of production improvement and genetic characterization of TMC-producing Streptomyces spp. will be discussed.

  • PDF

Heterologous Expression of Daptomycin Biosynthetic Gene Cluster Via Streptomyces Artificial Chromosome Vector System

  • Choi, Seunghee;Nah, Hee-Ju;Choi, Sisun;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권12호
    • /
    • pp.1931-1937
    • /
    • 2019
  • The heterologous expression of the Streptomyces natural product (NP) biosynthetic gene cluster (BGC) has become an attractive strategy for the activation, titer improvement, and refactoring of valuable and cryptic NP BGCs. Previously, a Streptomyces artificial chromosomal vector system, pSBAC, was applied successfully to the precise cloning of large-sized polyketide BGCs, including immunosuppressant tautomycetin and antibiotic pikromycin, which led to stable and comparable production in several heterologous hosts. To further validate the pSBAC system as a generally applicable heterologous expression system, the daptomycin BGC of S. roseosporus was cloned and expressed heterologously in a model Streptomyces cell factory. A 65-kb daptomycin BGC, which belongs to a non-ribosomal polypeptide synthetase (NRPS) family, was cloned precisely into the pSBAC which resulted in 28.9 mg/l of daptomycin and its derivatives in S. coelicolor M511(a daptomycin non-producing heterologous host). These results suggest that a pSBAC-driven heterologous expression strategy is an ideal approach for producing low and inconsistent Streptomyces NRPS-family NPs, such as daptomycin, which are produced low and inconsistent in native host.