• Title/Summary/Keyword: Tat- ANX1

Search Result 2, Processing Time 0.015 seconds

Transduced Tat-Annexin protein suppresses inflammation-associated gene expression in lipopolysaccharide (LPS)-stimulated Raw 264.7 cells

  • Lee, Sun-Hwa;Kim, Dae-Won;Back, Su-Sun;Hwang, Hyun-Sook;Park, Eun-Young;Kang, Tae-Cheon;Kwon, Oh-Shin;Park, Jong-Hoon;Cho, Sung-Woo;Han, Kyu-Hyung;Park, Jin-Seu;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.44 no.7
    • /
    • pp.484-489
    • /
    • 2011
  • Annexin-1 (ANX1) is an anti-inflammatory protein as well as an important modulator in inflammation. However, the precise action of ANX1 remains unclear. To elucidate the protective effects of ANX1 on lipopolysaccharide (LPS)-induced murine macrophage Raw 264.7 cells, we constructed a cell-permeable Tat-ANX1 protein. The transduced Tat-ANX1 protein markedly inhibited the expression of cyclooxygenase-2, production of prostaglandin $E_2$, and generation of pro-inflammatory cytokines in the cells. Furthermore, transduced Tat-ANX1 protein caused a significant reduction in the activation of nuclear factor-kappa B (NF-${\kappa}B$) and mitogen-activated protein kinase (MAPK). The results indicate that Tat-ANX1 inhibits the production of inflammatory response cytokines and enzymes by blocking NF-${\kappa}B$ and MAPK. Therefore, Tat-ANX1 protein may be useful as a therapeutic agent against various inflammatory diseases.

Suppression of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in mice by transduced Tat-Annexin protein

  • Lee, Sun-Hwa;Kim, Dae-Won;Eom, Seon-Ae;Jun, Se-Young;Park, Mee-Young;Kim, Duk-Soo;Kwon, Hyung-Joo;Kwon, Hyeok-Yil;Han, Kyu-Hyung;Park, Jin-Seu;Hwang, Hyun-Sook;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.45 no.6
    • /
    • pp.354-359
    • /
    • 2012
  • We examined that the protective effects of ANX1 on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in animal models using a Tat-ANX1 protein. Topical application of the Tat-ANX1 protein markedly inhibited TPA-induced ear edema and expression levels of cyclooxygenase-2 (COX-2) as well as pro-inflammatory cytokines such as interleukin-1 beta (IL-$1{\beta}$), IL-6, and tumor necrosis factor-alpha (TNF-${\alpha}$). Also, application of Tat-ANX1 protein significantly inhibited nuclear translocation of nuclear factor-kappa B (NF-${\kappa}B$) and phosphorylation of p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) in TPA-treated mice ears. The results indicate that Tat-ANX1 protein inhibits the inflammatory response by blocking NF-${\kappa}B$ and MAPK activation in TPA-induced mice ears. Therefore, the Tat-ANX1 protein may be useful as a therapeutic agent against inflammatory skin diseases.