• Title/Summary/Keyword: Task computing

Search Result 544, Processing Time 0.022 seconds

Scalable Approach to Failure Analysis of High-Performance Computing Systems

  • Shawky, Doaa
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.1023-1031
    • /
    • 2014
  • Failure analysis is necessary to clarify the root cause of a failure, predict the next time a failure may occur, and improve the performance and reliability of a system. However, it is not an easy task to analyze and interpret failure data, especially for complex systems. Usually, these data are represented using many attributes, and sometimes they are inconsistent and ambiguous. In this paper, we present a scalable approach for the analysis and interpretation of failure data of high-performance computing systems. The approach employs rough sets theory (RST) for this task. The application of RST to a large publicly available set of failure data highlights the main attributes responsible for the root cause of a failure. In addition, it is used to analyze other failure characteristics, such as time between failures, repair times, workload running on a failed node, and failure category. Experimental results show the scalability of the presented approach and its ability to reveal dependencies among different failure characteristics.

Crowdsourcing Software Development: Task Assignment Using PDDL Artificial Intelligence Planning

  • Tunio, Muhammad Zahid;Luo, Haiyong;Wang, Cong;Zhao, Fang;Shao, Wenhua;Pathan, Zulfiqar Hussain
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.129-139
    • /
    • 2018
  • The crowdsourcing software development (CSD) is growing rapidly in the open call format in a competitive environment. In CSD, tasks are posted on a web-based CSD platform for CSD workers to compete for the task and win rewards. Task searching and assigning are very important aspects of the CSD environment because tasks posted on different platforms are in hundreds. To search and evaluate a thousand submissions on the platform are very difficult and time-consuming process for both the developer and platform. However, there are many other problems that are affecting CSD quality and reliability of CSD workers to assign the task which include the required knowledge, large participation, time complexity and incentive motivations. In order to attract the right person for the right task, the execution of action plans will help the CSD platform as well the CSD worker for the best matching with their tasks. This study formalized the task assignment method by utilizing different situations in a CSD competition-based environment in artificial intelligence (AI) planning. The results from this study suggested that assigning the task has many challenges whenever there are undefined conditions, especially in a competitive environment. Our main focus is to evaluate the AI automated planning to provide the best possible solution to matching the CSD worker with their personality type.

Task Scheduling on Cloudlet in Mobile Cloud Computing with Load Balancing

  • Poonam;Suman Sangwan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.73-80
    • /
    • 2023
  • The recent growth in the use of mobile devices has contributed to increased computing and storage requirements. Cloud computing has been used over the past decade to cater to computational and storage needs over the internet. However, the use of various mobile applications like Augmented Reality (AR), M2M Communications, V2X Communications, and the Internet of Things (IoT) led to the emergence of mobile cloud computing (MCC). All data from mobile devices is offloaded and computed on the cloud, removing all limitations incorporated with mobile devices. However, delays induced by the location of data centers led to the birth of edge computing technologies. In this paper, we discuss one of the edge computing technologies, i.e., cloudlet. Cloudlet brings the cloud close to the end-user leading to reduced delay and response time. An algorithm is proposed for scheduling tasks on cloudlet by considering VM's load. Simulation results indicate that the proposed algorithm provides 12% and 29% improvement over EMACS and QRR while balancing the load.

MS Load Balancing Algorithm in Cloud Computing

  • Ankita Gupta;Ranu Lal Chouhan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.157-161
    • /
    • 2024
  • Cloud computing becomes an important technology for distributed computing and parallel computing. Cloud computing provides various facility like to share resources, software packages, information, storage and many different applications depending on user demand at any time and at any place. It provides an extensive measure for computing and storage. A service provided by it to user follows pay-as-you-go model. Although it provides many facilities still there is some problem which are resource discovery, fault tolerance, load balancing, and security. Out of these Load balancing is the main challenges. There are many techniques which used to distribute wor9kload or task equally across the servers. This paper includes cloud computing, cloud computing architecture, virtualization and MS load balancing technique which provide enhanced load balancing.

Design of Secure Log System in Cloud Computing Environment (클라우드 컴퓨팅 환경에서의 안전한 로그 시스템 설계)

  • Lee, Byung-Do;Shin, Sang Uk
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.300-307
    • /
    • 2016
  • Cloud computing that provide a elastic computing service is more complex compared to the existing computing systems. Accordingly, it has become increasingly important to maintain the stability and reliability of the computing system. And troubleshooting and real-time monitoring to address these challenges must be performed essentially. For these goals, the handling of the log data is needed, but this task in cloud computing environment may be more difficult compared to the traditional logging system. In addition, there are another challenges in order to have the admissibility of the collected log data in court. In this paper, we design secure logging service that provides the management and reliability of log data in a cloud computing environment and then analyze the proposed system.

Dynamic Available-Resource Reallocation based Job Scheduling Model in Grid Computing (그리드 컴퓨팅에서 유효자원 동적 재배치 기반 작업 스케줄링 모델)

  • Kim, Jae-Kwon;Lee, Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.2
    • /
    • pp.59-67
    • /
    • 2012
  • A grid computing consists of the physical resources for processing one of the large-scale jobs. However, due to the recent trends of rapid growing data, the grid computing needs a parallel processing method to process the job. In general, each physical resource divides a requested large-scale task. And a processing time of the task varies with an efficiency and a distance of each resource. Even if some resource completes a job, the resource is standing by until every divided job is finished. When every resource finishes a processing, each resource starts a next job. Therefore, this paper proposes a dynamic resource reallocation scheduling model (DDRSM). DDRSM finds a waiting resource and reallocates an unfinished job with an efficiency and a distance of the resource. DDRSM is an efficient method for processing multiple large-scale jobs.

Task-Level Dynamic Voltage Scaling for Embedded System Design: Recent Theoretical Results

  • Kim, Tae-Whan
    • Journal of Computing Science and Engineering
    • /
    • v.4 no.3
    • /
    • pp.189-206
    • /
    • 2010
  • It is generally accepted that dynamic voltage scaling (DVS) is one of the most effective techniques of energy minimization for real-time applications in embedded system design. The effectiveness comes from the fact that the amount of energy consumption is quadractically proportional to the voltage applied to the processor. The penalty is the execution delay, which is linearly and inversely proportional to the voltage. According to the granularity of tasks to which voltage scaling is applied, the DVS problem is divided into two subproblems: inter-task DVS problem, in which the determination of the voltage is carried out on a task-by-task basis and the voltage assigned to the task is unchanged during the whole execution of the task, and intra-task DVS problem, in which the operating voltage of a task is dynamically adjusted according to the execution behavior to reflect the changes of the required number of cycles to finish the task before the deadline. Frequent voltage transitions may cause an adverse effect on energy minimization due to the increase of the overhead of transition time and energy. In addition, DVS needs to be carefully applied so that the dynamically varying chip temperature should not exceed a certain threshold because a drastic increase of chip temperature is highly likely to cause system function failure. This paper reviews representative works on the theoretical solutions to DVS problems regarding inter-task DVS, intra-task DVS, voltage transition, and thermal-aware DVS.

A Function Level Static Offloading Scheme for Saving Energy of Mobile Devices in Mobile Cloud Computing (모바일 클라우드 컴퓨팅에서 모바일 기기의 에너지 절약을 위한 함수 수준 정적 오프로딩 기법)

  • Min, Hong;Jung, Jinman;Heo, Junyoung
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.707-712
    • /
    • 2015
  • Mobile cloud computing is a technology that uses cloud services to overcome resource constrains of a mobile device, and it applies the computation offloading scheme to transfer a portion of a task which should be executed from a mobile device to the cloud. If the communication cost of the computation offloading is less than the computation cost of a mobile device, the mobile device commits a certain task to the cloud. The previous cost analysis models, which were used for separating functions running on a mobile device and functions transferring to the cloud, only considered the amount of data transfer and response time as the offloading cost. In this paper, we proposed a new task partitioning scheme that considers the frequency of function calls and data synchronization, during the cost estimation of the computation offloading. We also verified the energy efficiency of the proposed scheme by using experimental results.

A Study on Architecture of Access Control System with Enforced Security Control for Ubiquitous Computing Environment (유비쿼터스 컴퓨팅 환경을 위한 보안통제가 강화된 접근제어 시스템 설계에 관한 연구)

  • Eom, Jung-Ho;Park, Seon-Ho;Chung, Tai-Myoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.5
    • /
    • pp.71-81
    • /
    • 2008
  • In the paper, we designed a context aware task-role based access control system(CAT-RACS) which can control access and prevent illegal access efficiently for various information systems in ubiquitous computing environment. CAT-RACS applied CA-TRBAC, which adds context-role concept for achieve policy composition by context information and security level attribute to be kept confidentiality of information. CA-TRBAC doesn't permit access when context isn't coincident with access control conditions, or role and task's security level aren't accord with object's security level or their level is a lower level, even if user's role and task are coincident with access control conditions. It provides security services of user authentication and access control, etc. by a context-aware security manager, and provides context-aware security services and manages context information needed in security policy configuration by a context information fusion manager. Also, it manages CA-TRBAC policy, user authentication policy, and security domain management policy by a security policy manager.

Secure Scheme Between Nodes in Cloud Robotics Platform (Cloud Robotics Platform 환경에서 Node간 안전한 통신 기법)

  • Kim, Hyungjoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.595-602
    • /
    • 2021
  • The robot is developing into a software-oriented shape that recognizes the surrounding situation and is given a task. Cloud Robotics Platform is a method to support Service Oriented Architecture shape for robots, and it is a cloud-based method to provide necessary tasks and motion controllers depending on the situation. As it evolves into a humanoid robot, the robot will be used to help humans in generalized daily life according to the three robot principles. Therefore, in addition to robots for specific individuals, robots as public goods that can help all humans depending on the situation will be universal. Therefore, the importance of information security in the Cloud Robotics Computing environment is analyzed to be composed of people, robots, service applications on the cloud that give intelligence to robots, and a cloud bridge that connects robots and clouds. It will become an indispensable element for In this paper, we propose a Security Scheme that can provide security for communication between people, robots, cloud bridges, and cloud systems in the Cloud Robotics Computing environment for intelligent robots, enabling robot services that are safe from hacking and protect personal information.