There is a demand for introducing a challenging and innovative R&D system to develop new technologies to generate weapon system requirements. Despite the increasing trend in annual core technology development tasks, the infrastructure expansion, including personnel in research management institutions, is relatively insufficient. This situation continuously exposes difficulties in task planning, selection, execution, and management. Therefore, there is a pressing need for strategies to initiate timely research and development and enhance budget execution efficiency through the streamlining of task agreement schedules. In this study, we propose a strategic model utilizing a flexible workforce model, considering constraints and optimizing workload distribution through resource allocation to minimize bottlenecks for efficient task agreement schedules. Comparative analysis with the existing operational environment confirms that the proposed model can handle an average of 67 more core technology development tasks within the agreement period compared to the baseline. In addition, the risk management analysis, which considered the probabilistic uncertainty of the fluctuating number of core technology research and development projects, confirmed that up to 115 core technology development can be contracted within the year under risk avoidance.
With the paradigm shifting from the principal of manufacturing efficiency to business globalism and rapid adaptation to its environments, more and more enterprises are being virtually organized as manufacturing network of different units in web. The formation of these enterprise called as Virtual Enterprise(VE) is becoming a growing trend as enterprises concentrating on core competence and economic benefit. 13us paper proposes multi-agent based task assignment system for VE, which attempts to address the selection of individually managed partners and the task assignment to them A case example is presented to illustrate how the proposed system can assign the task to partners.
최근 인터넷 환경에서의 기술 향상으로 인하여 다양한 정보를 공유하고, 네트워크로 연결된 여러 시스템 자원을 이용하는 것이 용이하게 되었다. 특히, 자바의 애플릿(applet)을 이용한 코드 이동(code migration) 기술은 인터넷의 웹 환경에서 프로그램의 분산을 용이하게 하며, 그 애플릿을 수행하는 브라우저는 이동된 코드의 신뢰성을 보장해준다. 본 논문은 웹 환경에서 이동 가능 코드를 분산시키고, 대량의 연산수행을 지닌 작업을 분배하여 병렬적으로 수행시킨 뒤, 그 결과를 취합하는 웹 기반 병렬 시스템의 설계 및 구현에 관하여 기술한다. 또한, 이 시스템에 참여하는 이질적인 다수의 호스트들은 인터넷이라는 환경에서 지리적으로 떨어져 연결되어 있으므로 성능의 차이 및 가변성을 예상하기 힘들다. 그러므로, 그들 간의 성능 차이를 고려한 태스크 할당 알고리즘 및 심각한 가변성에 대한 적응력이 요구된다. 이 논문에서는 시스템의 구현에 사용될 적응성 향상 기법을 제시하고, 시스템의 작업 처리 성능 및 제안하는 알고리즘들의 효율을 나타내는 성능 평가 결과를 제시한다.
공간 조인은 두 개의 데이터 집합으로부터 공간적인 조건을 만족하는 두 객체 쌍의 집합을 구하는 것으로 비용이 매우 큰 연산자이다. 지난 수년동안 공간 조인의 순차 수행 시간은 많이 향상되었지만, 그 응답시간은 사용자의 요구를 만족시키지 못하고 있다. 따라서 최근 병렬 시스템을 이용하여 이러한 문제를 해결하려는 연구가 진행되고 있다. 그렇지만 프로세서의 수가 증가할수록 병렬 처리에 의한 프로세서의 효율성은 급격히 떨어진다. 이것은 병렬 공간 조인을 수행할 경우 순차 공간 조인 보 다 디스크 병목 현상과 메시지 전송 오버헤드가 심하게 발생하기 때문이다. 이 논문에서는 공유 디스크 구조에서 다중 프로세서의 디스크 동시 접근으로 인한 병목 현상을 완화하고, 메시지 전송을 최소화하기 위한 태스크 할당 방법을 제안한다. 제안한 태스크 할당 방법을 두 가지 공간 조인 기법에 각각 적용하여 디스크 접근 횟수와 메시지 전송 횟수의 감소 효과를 실험으로 평가한다. MIMD 구조 및 공유디스크 방식의 병렬 시스템에서의 다양한 실험에서 이 논문에서 제안한 준동적 태스크 할당 방법이 정적 할당과 동적 할당 방법에 비해 우수함을 보였다.
버스 분할 기법은 통신이 많은 모듈들을 가까이 배치하고 필요한 버스 단편만 사용함으로 버스 에너지 소비를 줄인다. 그러나 MPSoC와 같은 다중 프로세서 플랫폼에서는 캐시 일관성을 유지하기 위하여 모든 프로세서에서 버스 트랜잭션을 알아야 하므로, 기존의 버스 분할 기법을 적용할 수 없다. 본 논문에서는 공유 메모리 기반의 MPSoC 플랫폼에서 버스 에너지를 절감시키기 위한 버스 분할 기법을 제안한다. 제안된 버스 분할 기법은 비 공유 메모리와 공유 메모리의 버스를 분할함으로써, 캐시 일관성을 유지하며 비 공유 메모리를 참조할 때 소비하는 버스 에너지를 최소화시킨다. 또한, 태스크별 버스 트랜잭션 횟수를 기반하여 태스크를 할당함으로써, 공유 메모리를 참조할 때 소비하는 버스 에너지를 절감시키는 캐시 일관성을 고려한 태스크 할당 기법을 제안한다. 시뮬레이션을 통한 실험에서 제안된 버스 분할 기법은 비 공유 메모리 참조시의 버스 에너지를 최대 83%까지 절감시키며, 태스크 할당 알고리즘은 공유 메모리 참조시의 버스 에너지를 최대 36%까지 절감시키는 효과가 있음을 보여준다. 그럼으로 다중 프로세서 시스템에서도 버스 분할 기법을 적용하여 버스 에너지 절감 효과를 볼 수 있으며, 캐시 일관성을 고려한 태스크 할당 기법을 통해 추가적으로 버스 에너지를 절감할 수 있음을 보여준다.
Reliability and maintainability allocation in the analysis of the system's design, with the objective of planning and installing the individual components in such a way that the system performance is achieved. This paper has been made to solve an important task in reliability management of manufacturing systems within the general objective being to increase productivity while maintaining costs low. Thus, the purpose of this paper is to provide an analytical approach to determine an optimal reliability and maintainability allocation, trading off among system performance and parts investment costs. Two important considerations will be addressed in this regard : (ⅰ) determine the reliability and maintainability allocation of parts which maximizes a given production index, having fixed the total cost of investments ; and (ⅱ) determine the reliability and maintainability allocation which minimizes the total cost of investments, having fixed a minimum acceptable level of productivity. The procedure proposed in this paper is able to provide to managers and designers useful indications on the reliability and maintainability characteristics of parts in series -parallel systems. And this heuristic model is a decision support tool for contractors who are involved in large scale design projects such as ship and aircraft design. Numerical examples prove that an approximate expression of the average throughput rate is sufficiently accurate to be used in a numerical optimization method.
An efficient and reasonable resource allocation strategy can greatly improve the service quality of Internet of Vehicles (IoV). However, most of the current allocation methods have overestimation problem, and it is difficult to provide high-performance IoV network services. To solve this problem, this paper proposes a network resource allocation strategy based on deep learning network model DDQN. Firstly, the method implements the refined modeling of IoV model, including communication model, user layer computing model, edge layer offloading model, mobile model, etc., similar to the actual complex IoV application scenario. Then, the DDQN network model is used to calculate and solve the mathematical model of resource allocation. By decoupling the selection of target Q value action and the calculation of target Q value, the phenomenon of overestimation is avoided. It can provide higher-quality network services and ensure superior computing and processing performance in actual complex scenarios. Finally, simulation results show that the proposed method can maintain the network delay within 65 ms and show excellent network performance in high concurrency and complex scenes with task data volume of 500 kbits.
Objective: The purpose of this paper is to introduce a task complexity model combining task design aspects and complexity dimensions and to explain an approach to identifying and organizing task complexity factors based on the model. Background: Task complexity is a critical concept in describing and predicting human performance in complex systems such as nuclear power plants(NPPs). In order to understand the nature of task complexity, task complexity factors need to be identified and organized in a systematic manner. Although several methods have been suggested for identifying and organizing task complexity factors, it is rare to find an analytical approach based on a theoretically sound model. Method: This study regarded a task as a system to be designed. Three levels of design ion, which are functional, behavioral, and structural level of a task, characterize the design aspects of a task. The behavioral aspect is further classified into five cognitive processing activity types(information collection, information analysis, decision and action selection, action implementation, and action feedback). The complexity dimensions describe a task complexity from different perspectives that are size, variety, and order/organization. Combining the design aspects and complexity dimensions of a task, we developed a model from which meaningful task complexity factors can be identified and organized in an analytic way. Results: A model consisting of two facets, each of which is respectively concerned with design aspects and complexity dimensions, were proposed. Additionally, twenty-one task complexity factors were identified and organized based on the model. Conclusion: The model and approach introduced in this paper can be effectively used for examining human performance and human-system interface design issues in NPPs. Application: The model and approach introduced in this paper could be used for several human factors problems, including task allocation and design of information aiding, in NPPs and extended to other types of complex systems such as air traffic control systems as well.
This study introduces an example environment where wireless devices are mobile, devices use dynamic voltage scaling, devices and tasks are heterogeneous, tasks have deadline, and the computation and communication power is dynamically changed for energy saving. For this type of environment, the efficient system-level energy management and resource management for task completion can be an essential part of the operation and design of such systems. Therefore, the resources are assigned to tasks and the tasks may be scheduled to maximize a goal which is to minimize energy usage while trying to complete as many tasks as possible by their deadlines. This paper also introduces mobility of nodes and variable transmission power for communication which complicates the resource management/task scheduling problem further.
Deregulation in power industry has made the reactive power ancillary service management a critical task to power system operators from both technical and economic perspectives. Reactive power management in power systems is a complex combinatorial optimization problem involving nonlinear functions with multiple local minima and nonlinear constraints. This paper proposes a practical market-based reactive power ancillary service management scheme to tackle the challenge. In this paper a new model for voltage security and reactive power management is presented. The proposed model minimizes reactive support cost as an economic aspect and insures the voltage security as a technical constraint. For modeling validation study, two optimization algorithm, a genetic algorithm (GA) and particle swarm optimization (PSO) method are used to solve the problem of optimum allocation of reactive power in power systems under open market environment and the results are compared. As a case study, the IEEE-30 bus power system is used. Results show that the algorithm is well competent for optimal allocation of reactive power under practical constraints and price based conditions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.