• Title/Summary/Keyword: Targeting protein

Search Result 470, Processing Time 0.022 seconds

Establishment and Characterization of MTDH Knockdown by Artificial Micro RNA Interference - Functions as a Potential Tumor Suppressor in Breast Cancer

  • Wang, Song;Shu, Jie-Zhi;Cai, Yi;Bao, Zheng;Liang, Qing-Mo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2813-2818
    • /
    • 2012
  • Background: Considerable evidence suggests that metadherin (MTDH) is a potentially crucial mediator of tumor malignancy and an important therapeutic target for simultaneously enhancing chemotherapy efficacy and reducing metastasis risk. Inhibition of MTDH expression by RNA interference has been shown in several previous research, but silencing MTDH expression by microRNA (miRNA) interference in breast cancer has not been established. In the present study, we investigated the role of MTDH-miRNA in down-regulation of proliferation, motility and migration of breast carcinoma cells. Methods: Expression vectors of recombinant plasmids expressing artificial MTDH miRNA were constructed and transfected to knockdown MTDH expression in MDA-MB-231 breast cancer cells. Expression of MTDH mRNA and protein was detected by RT-PCR and Western blot, respectively. MTT assays were conducted to determine proliferation, and wound healing assays and transwell migration experiments for cell motility and migration. Results: Transfection of recombinant a plasmid of pcDNA-MTDH-miR-4 significantly suppressed the MTDH mRNA and protein levels more than 69% in MDA-MB-231 breast cancer cells. This knockdown significantly inhibited proliferation, motility and migration as compared with controls. Conclusions: MTDH-miRNA may play an important role in down-regulating proliferation, motility and migration in breast cancer cells, and should be considered as a potential small molecule inhibitor therapeutic targeting strategy for the future.

Expression, Purification, and Biological Characterization of The Amino-Terminal Fragment of Urokinase in Pichia pastoris

  • Li, Jianping;Lin, Yuli;Zhuang, Hongqin;Hua, Zi-Chun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1197-1205
    • /
    • 2013
  • Urokinase (uPA) and its receptor (uPAR) play an important role in tumor growth and metastasis. Targeting the excessive activation of this system as well as the proliferation of the tumor vascular endothelial cell would be expected to prevent tumor neovasculature and halt the tumor development. In this regard, the amino-terminal fragment (ATF) of urokinase has been confirmed as effective to inhibit the proliferation, migration, and invasiveness of cancer cells via interrupting the interaction of uPA and uPAR. Previous studies indicated that ATF expressed in Escherichia coli was mainly contained in inclusion bodies and also lacked posttranslational modifications. In this study, the biologically active and soluble ATF was cloned and expressed in Pichia pastoris. The recombinant protein was purified to be homogenous and confirmed to be biologically active. The yield of the active ATF was about 30 mg/l of the P. pastoris culture medium. The recombinant ATF (rATF) could efficiently inhibit angiogenesis, endothelial cell migration, and tumor cell invasion in vitro. Furthermore, it could inhibit in vivo xenograft tumor growth and prolong the survival of tumor-bearing mice significantly by competing with uPA for binding to cell surfaces. Therefore, P. pastoris is a highly efficient and cost-effective expression system for large-scale production of biologically active rATFs for potential therapeutic application.

Suppressive effects of Lithospermum erythrorhizon extracts on lipopolysaccharide-induced activation of AP-1 and NF-κB via mitogen-activated protein kinase pathways in mouse macrophage cells

  • Han, Kyu-Yeon;Kwon, Taek-Hwan;Lee, Tae-Hoon;Lee, Sung-Joon;Kim, Sung-Hoon;Kim, Ji-Young
    • BMB Reports
    • /
    • v.41 no.4
    • /
    • pp.328-333
    • /
    • 2008
  • A variety of anti-inflammatory agents have been shown to exert chemopreventive activity via targeting of transcription factors such as NF-${\kappa}B$ and AP-1. Lithospermum erythrorhizon (LE) has long been used in traditional oriental medicine. In this study, we demonstrated the inhibitory effects of LE extracts on lipopolysaccharide (LPS)-stimulated production of inflammatory cytokines. As an underlying mechanism of inhibition, LE extracts reduced LPS-induced transactivation of AP-1 as well as NF-${\kappa}B$ in mouse macrophage cells. Electrophoretic mobility shift assays indicated that LE extracts inhibited the DNA binding activities of AP-1 and NF-${\kappa}B$. In addition, phosphorylation of $I{\kappa}B-{\alpha}$ protein was suppressed by LE extracts. Moreover, LE extracts inhibited c-Jun N-terminal kinase and extracellular signal-regulated signaling pathways. Our results suggest that the anti-inflammatory activity of LE extracts may be mediated by the inhibition of signal transduction pathways that normally lead to the activation of AP-1and NF-${\kappa}B$. These inhibitory effects may be useful for chemoprevention of cancer or other chronic inflammatory diseases.

Preparation of 125

  • Kim, Byoung-Soo;Kim, Eun-Jung;Lee, Hae-June;Han, Sang-Jin;Choi, Tae-Hyun;Lee, Yun-Sil;Cheon, Gi-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2649-2655
    • /
    • 2010
  • $PKC{\delta}$-catalytic V5 Heptapeptide (FEQFLDI, FP7) interacts with heat shock protein 27 (HSP27) and inhibits HSP27-mediated resistance to cell death against various stimuli including radiation therapy. Here, we prepared radio-iodinated heptapeptide and further investigated its uptake properties in HSP27 expression cells. Peptide sequence of FP7 and a negative control peptide (WSLLEKR, QP7) was modified by substituting their C-terminus residue to tyrosine (FP6Y and QP6Y) to label radio-iodine. Iodinated peptides were confirmed by LC mass analysis with cold iodine reaction mixture. Accumulation of [$^{125}I$]iodo-FP6Y and [$^{125}I$]iodo-QP6Y in NCI-H1299 cell line, with higher level of HSP27, and NCI-H460 cell line, with lower level of HSP27, was measured by NaI(Tl) scintillation counter. The modification of substituting C-terminus residue of FP7 to tyrosine (FP6Y) did not affect its interaction with HSP27. Accumulation of [$^{125}I$]iodo-FP6Y in NCI-H1299 cells was 3 fold higher than in NCI-H460 cells. The novel radio-iodinated FP6Y would be used as a tracer for targeting HSP27 protein.

TI-I-174, a Synthetic Chalcone Derivative, Suppresses Nitric Oxide Production in Murine Macrophages via Heme Oxygenase-1 Induction and Inhibition of AP-1

  • Kim, Mi Jin;Kadayat, Taraman;Kim, Da Eun;Lee, Eung-Seok;Park, Pil-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.22 no.5
    • /
    • pp.390-399
    • /
    • 2014
  • Chalcones (1,3-diaryl-2-propen-1-ones), a flavonoid subfamily, are widely known for their anti-inflammatory properties. Propenone moiety in chalcones is known to play an important role in generating biological responses by chalcones. In the present study, we synthesized chalcone derivatives structurally modified in propenone moiety and examined inhibitory effect on nitric oxide (NO) production and its potential mechanisms. Among the chalcone derivatives used for this study, TI-I-174 (3-(2-Hydroxyphenyl)-1-(thiophen-3-yl)prop-2-en-1-one) most potently inhibited lipopolysaccharide (LPS)-stimulated nitrite production in RAW 264.7 macrophages. TI-I-174 treatment also markedly inhibited inducible nitric oxide synthase (iNOS) expression. However, TI-I-174 did not significantly affect production of IL-6, cyclooxygenase-2 (COX-2) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), implying that TI-I-174 inhibits production of inflammatory mediators in a selective manner. Treatment of macrophages with TI-I-174 significantly inhibited transcriptional activity of activator protein-1 (AP-1) as determined by luciferase reporter gene assay, whereas nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activity was not affected by TI-I-1744. In addition, TI-I-174 significantly inhibited activation of c-Jun-N-Terminal kinase (JNK) without affecting ERK1/2 and p38MAPK, indicating that down-regulation of iNOS gene expression by TI-I-174 is mainly attributed by blockade of JNK/AP-1 activation. We also demonstrated that TI-I-174 treatment led to an increase in heme oxygenase-1 (HO-1) expression both at mRNA and protein level. Transfection of siRNA targeting HO-1 reversed TI-I-174-mediated inhibition of nitrite production. Taken together, these results indicate that TI-I-174 suppresses NO production in LPS-stimulated RAW 264.7 macrophages via induction of HO-1 and blockade of AP-1 activation.

Analysis of Gene Expression Modulated by Indole-3-carbinol in Dimethylbenz[a]anthracene-induced Rat Mammary Carcinogenesis

  • Kang, Jin-Seok;Park, Han-Jin;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.222-229
    • /
    • 2009
  • Our previous finding that pre-initiation treatment of indole-3-carbinol (I3C) represents a chemopreventive effect in dimethylbenz[a]anthracene (DMBA)-induced mammary carcinogenesis has prompted us to test the global expression of genes at an early stage. Rats were continuously fed 300 ppm I3C in their diet at 6 weeks of age and were injected with DMBA at 7 weeks of age, and were sacrificed at 8 weeks of age. Global gene expression analysis using oligonucleotide microarrays was conducted to detect altered genes in DMBA- or DMBA plus I3C-treated mammary glands. Altered genes were identified by fold changes of 1.2 and by t-test (P<0.05) from the log ratios of the hybridization intensity of samples between control (Group 1) and DMBA (Group 2), and from those of samples between DMBA (Group 2) and DMBA plus I3C (Group 3). From these genes, we chose altered genes that were up- or down-regulated by DMBA treatment and recovered to the control level by I3C treatment. For early stage of carcinogenesis, I3C treatment induced the recovery to normal levels of several genes including cell cycle pathway (cyclin B2, cell division cycle 2 homolog A), MAP signaling pathway (fibroblast growth factor receptor 1, platelet derived growth factor receptor, beta polypeptide), and insulin signaling (protein phosphatase 1, regulatory (inhibitor) subunit 3B and flotillin 2), which were up-regulated by DMBA treatment. In addition, I3C treatment induced the recovery to normal levels of several genes including those of MAPK signaling (transforming growth factor, beta receptor 1 and protein phosphatase 3, catalytic subunit, beta isoform), which were down-regulated by DMBA treatment. These results suggest that the targeting of these genes presents a possible approach for chemoprevention in DMBA-induced mammary carcinogenesis.

Knocking-in of the Human Thrombopoietin Gene on Beta-casein Locus in Bovine Fibroblasts

  • Chang, Mira;Lee, Jeong-Woong;Koo, Deog-Bon;Shin, Sang Tae;Han, Yong-Mahn
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.6
    • /
    • pp.806-813
    • /
    • 2010
  • Animal bioreactors have been regarded as alternative tools for the production of limited human therapeutic proteins. The mammary glands of cattle are optimal tissues to produce therapeutic proteins that cannot be produced in large amounts in traditional systems based on microorganisms and eukaryotic cells. In this study, two knock-in vectors, pBCTPOKI-6 and pBCTPOKI-10, which target the hTPO gene on the bovine beta-casein locus, were designed to develop cloned transgenic cattle. The pBCTPOKI-6 and pBCTPOKI-10 vectors expressed hTPO protein in culture medium at a concentration of 774 pg/ml and 1,867 pg/ml, respectively. Successfully, two targeted cell clones were obtained from the bovine fibroblasts transfected with the pBCTPOKI-6 vector. Cloned embryos reconstructed with the targeted nuclei showed a lower in vitro developmental competence than those with the wild-type nuclei. After transfer of the cloned embryos into recipients, 7 pregnancies were detected at 40 to 60 days of gestation, but failed to develop to term. The results are the first trial for targeting of a human gene on the bovine milk protein gene locus, providing the potential for a large-scale production of therapeutic proteins in the animal bioreactor system.

Inhibitory Effects of Phenolic Alkaloids of Menispermum Dauricum on Gastric Cancer in Vivo

  • Zhang, Hong-Feng;Wu, Di;Du, Jian-Kuo;Zhang, Yan;Su, Yun-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10825-10830
    • /
    • 2015
  • The present study was conducted to investigate effects and mechanisms of action of phenolic alkaloids of Menispermum dauricum (PAMD) on gastric cancer in vivo. In vitro, cell apoptosis of human gastric cancer cell line SGC-7901 was observed using fluorescence staining. In vivo, a mice model was constructed to observe tumor growth with different doses. Cell apoptosis was examined using flow cytometry and K-RAS protein expression using Western blotting. The mRNA expression of P53, BCL-2, BAX, CASPASE-3, K-RAS was examined by real-time PCR. PAMD significantly suppressed tumor growth in the xenograft model of gastric cancer in a dose-dependent manner (p<0.01). Functionally, PAMD promoted cell apoptosis of the SGC-7901 cells and significantly increased the rate of cell apoptosis of gastric tumor cells (p<0.05). Mechanically, PAMD inhibited the expression of oncogenic K-RAS both at the mRNA and protein levels. In addition, PAMD affected the mRNA expression of the cell apoptosis-related genes (P53, BCL-2, BAX, CASPASE-3). PAMD could suppress gastric tumor growth in vivo, possibly through inhibiting oncogenic K-RAS, and induce cell apoptosis possibly by targeting the cell apoptosis-related genes of P53, BCL-2, BAX, CASPASE-3.

Adjuvant effect of liposome-encapsulated natural phosphodiester CpG-DNA

  • Kim, Dong-Bum;Kwon, Sang-Hoon;Ahn, Chi-Seok;Lee, Young-Hee;Choi, Soo-Young;Park, Jin-Seu;Kwon, Hyeok-Yil;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • v.44 no.11
    • /
    • pp.758-763
    • /
    • 2011
  • Immunostimulatory CpG-DNA targeting TLR9 is one of the most extensively evaluated vaccine adjuvants. Previously, we found that a particular form of natural phosphodiester bond CpG-DNA (PO-ODN) encapsulated in a phosphatidyl-${\beta}$-oleoyl-${\gamma}$-palmitoyl ethanolamine (DOPE) : cholesterol hemisuccinate (CHEMS) (1 : 1 ratio) complex (Lipoplex(O)) is a potent adjuvant. Complexes containing peptide and Lipoplex(O) are extremely useful for B cell epitope screening and antibody production without carriers. Here, we showed that IL-12 production was increased in bone marrow derived dendritic cells in a CpG sequence-dependent manner when PO-ODN was encapsulated in Lipoplex(O), DOTAP or lipofectamine. However, the effects of Lipoplex(O) surpassed those of PO-ODN encapsulated in DOTAP or lipofectamine and also other various forms of liposome-encapsulated CpG-DNA in terms of potency for protein antigen-specific IgG production and Th1- associated IgG2a production. Therefore, Lipoplex(O) may have a unique potent immunoadjuvant activity which can be useful for various applications involving protein antigens as well as peptides.

Nrf2 Expression and Apoptosis in Quercetin-treated Malignant Mesothelioma Cells

  • Lee, Yoon-Jin;Lee, David M.;Lee, Sang-Han
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.416-425
    • /
    • 2015
  • NF-E2-related factor 2 (Nrf2), a basic leucine zipper transcription factor, has recently received a great deal of attention as an important molecule that enhances antioxidative defenses and induces resistance to chemotherapy or radiotherapy. In this study, we investigated the apoptosis-inducing and Nrf2- upregulating effects of quercetin on malignant mesothelioma (MM) MSTO-211H and H2452 cells. Quercetin treatment inhibited cell growth and led to upregulation of Nrf2 at both the mRNA and protein levels without altering the ubiquitination and extending the half-life of the Nrf2 protein. Following treatment with quercetin, analyses of the nuclear level of Nrf2, Nrf2 antioxidant response element-binding assay, Nrf2 promoter-luc assay, and RT-PCR toward the Nrf2-regulated gene, heme oxygenase-1, demonstrated that the induced Nrf2 is transcriptionally active. Knockdown of Nrf2 expression with siRNA enhanced cytotoxicity due to the induction of apoptosis, as evidenced by an increase in the level of proapoptotic Bax, a decrease in the level of antiapoptotic Bcl-2 with enhanced cleavage of caspase-3 and PARP proteins, the appearance of a sub-$G_0/G_1$ peak in the flow cytometric assay, and increased percentage of apoptotic propensities in the annexin V binding assay. Effective reversal of apoptosis was observed following pretreatment with the pan-caspase inhibitor Z-VAD. Moreover, Nrf2 knockdown exhibited increased sensitivity to the anticancer drug, cisplatin, presumably by potentiating the oxidative stress induced by cisplatin. Collectively, our data demonstrate the importance of Nrf2 in cytoprotection, survival, and drug resistance with implications for the potential significance of targeting Nrf2 as a promising strategy for overcoming resistance to chemotherapeutics in MM.