• 제목/요약/키워드: Targeted cancer therapy

검색결과 232건 처리시간 0.035초

한약물을 이용한 암 치료 관련 무작위 배정 임상시험에 대한 고찰 (Review of Randomized Controlled Trials using Herbal Remedies on Cancer Patients)

  • 박봉기;왕경화;조정효;손창규
    • 대한한의학회지
    • /
    • 제31권5호
    • /
    • pp.12-32
    • /
    • 2010
  • Objective: This study aimed to review herbal remedy-based RCTs on cancer patients in order to produce helpful information for clinical study of herbal medicine in the future. Methods: We collected all RCTs using herbal remedies on cancer patients from Pubmed and Cochrane databases until November 1st, 2009. Elementary information such as nation where performed, clinical question, design, randomization, double-blinding and allocation concealment were analyzed. Results: 153 RCTs were finally selected. 119 RCTs were conduced in China while only 2 were done in Korea. The most frequent targeted cancer was lung cancer as 29 RCTs. The main clinical questions included improvement of quality of life, elongation of survival rate and regression of tumor being 83, 62 and 55 respectively. 112 RCTs used herbal remedies with western therapy. Adequate methods for randomization and allocation concealment were found in 37% and 10% of trials respectively. Conclusions: We found that herbal remedies are used on cancer patients in aspects of both caring for the human body and tumor treatment itself. The study might provide us useful data for cancer-related clinical study using herbal remedies in the future.

Current Insights on Cholangiocarcinoma Research: a Brief Review

  • Mathema, Vivek Bhakta;Na-Bangchang, Kesara
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권4호
    • /
    • pp.1307-1313
    • /
    • 2015
  • Colangiocarcinoma (CCA) is a progressively fatal disease which generally occurs due to malignant transformation of hepatic biliary cholangiocytes. The incidence of CCA has been increasing worldwide and there is an urgent requirement for effective diagnosis and treatment strategies against this devastating disease. Different factors including liver-fluke infestation, viral hepatitis, exogenous nitrosamine-mediated DNA damage, and chronic inflammation have been linked to CCA genesis. However, the risk factors and underlying complex mechanisms leading to development of CCA are not sufficiently understood to devise an effective targeted treatment therapy. In this review, we summarize currently known epidemiological and pathological aspects of the disease and briefly describe various potential biomarkers and experimental anticancer phytochemicals related to CCA research. In addition, we also sum up recent findings that link chronic inflammation of hepatic biliary cholangiocytes with CCA. The collective information concisely presented in this article would provide useful insights into the current understanding of this cancer.

Mechanistic insights into differential requirement of receptor dimerization for oncogenic activation of mutant EGFR and its clinical perspective

  • Cho, Jeonghee
    • BMB Reports
    • /
    • 제53권3호
    • /
    • pp.133-141
    • /
    • 2020
  • The epidermal growth factor receptor (EGFR), a member of the ErbB family (EGFR, ErbB2, ErbB3 and ErbB4), plays a crucial role in regulating various cellular responses such as proliferation, differentiation, and survival. As a result, aberrant activation of EGFR, mostly mediated through different classes of genomic alterations occurring within EGFR, is closely associated with the pathogenesis of numerous human cancers including lung adenocarcinoma, glioblastoma, and colorectal cancer. Thus, specific suppression of oncogenic activity of mutant EGFR with its targeted drugs has been routinely used in the clinic as a very effective anti-cancer strategy in treating a subset of tumors driven by such oncogenic EGFR mutants. However, the clinical efficacy of EGFR-targeted therapy does not last long due to several resistance mechanisms that emerge in the patients following the drug treatment. Thus, there is an urgent need for the development of novel therapeutic tactics specifically targeting mutant EGFR with the focus on the unique biological features of various mutant EGFR. Regarding this point, our review specifically emphasizes the recent findings about distinct requirements of receptor dimerization and autophosphorylation, which are critical steps for enzymatic activation of EGFR and signaling cascades, respectively, among wildtype and mutant EGFR and further discuss their clinical significance. In addition, the molecular mechanisms regulating EGFR dimerization and enzymatic activity by a key negative feedback inhibitor Mig6 as well as the clinical use for developing potential novel drugs targeting it are described in this review.

Ku80의 DNA-PKcs 결합부위 합성 Peptide 투여에 의한 유방암세포의 DNA-dependent protein kinase 억제 효과 (Effect on the Inhibition of DNA-PK in Breast Cancer Cell lines(MDA-465 and MDA-468) with DNA-PKcs Binding Domain Synthetic Peptide of Ku80)

  • 김충희;김태숙;문양수;정장용;강정부;김종수;강명곤;박희성
    • 한국임상수의학회지
    • /
    • 제21권3호
    • /
    • pp.253-258
    • /
    • 2004
  • DNA double-strand break (DSB) is a serious treat for the cells including mutations, chromosome rearrangements, and even cell death if not repaired or misrepaired. Ku heterodimer regulatory DNA binding subunits (Ku70/Ku80) bound to double strand DNA breaks are able to interact with 470-kDa DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and the interaction is essential for DNA-dependent protein kinase (DNA-PK) activity. The Ku80 mutants were designed to bind Ku70 but not DNA end binding activity and the peptides were treated in breast cancer cells for co-therapy strategy to see whether the targeted inhibition of DNA-dependent protein kinase (DNA-PK) activity sensitized breast cancer cells to ionizing irradiation or chemotherapy drug to develop a treatment of breast tumors by targeting proteins involved in damage-signaling pathway and/or DNA repair. We designed domains of Ku80 mutants, 26 residues of amino acids (HN-26) as a control peptide or 38 (HNI-38) residues of amino acids which contain domains of the membrane-translocation hydrophobic signal sequence and the nuclear localization sequence, but HNI-38 has additional twelve residues of peptide inhibitor region. We observed that the synthesized peptide (HNI-38) prevented DNA-PKcs from binding to Ku70/Ku80, resulting in inactivation of DNA-PK complex activity in breast cancer cells (MDA-465 and MDA-468). Consequently, the peptide treated cells exhibited poor to no DNA repair, and became highly sensitive to irradiation or chemotherapy drugs. The growth of breast cancer cells was also inhibited. These results demonstrate the possibility of synthetic peptide to apply breast cancer therapy to induce apoptosis of cancer cells.

Postoperative fluid therapy in enhanced recovery after surgery for pancreaticoduodenectomy

  • Sharnice Koek;Johnny Lo;Rupert Ledger;Mohammed Ballal
    • 한국간담췌외과학회지
    • /
    • 제28권1호
    • /
    • pp.80-91
    • /
    • 2024
  • Backgrounds/Aims: Optimal intravenous fluid management during the perioperative period for patients undergoing pancreaticoduodenectomy (PD) within the framework of enhanced recovery after surgery (ERAS) is unclear. Studies have indicated that excessive total body salt and water can contribute to the development of oedema, leading to increased morbidity and extended hospital stays. This study aimed to assess the effects of an intravenous therapy regimen during postoperative day (POD) 0 to 2 in PD patients within ERAS. Methods: A retrospective interventional cohort study was conducted, and it involved all PD patients before and after implementation of ERAS (2009-2017). In the ERAS group, a targeted maintenance fluid regimen of 20 mL/kg/day with a sodium requirement of 0.5 mmoL/kg/day was administered. Outcome measures included the mmol of sodium and chloride administered, length of stay, and morbidity (postoperative pancreatic fistula, POPF; acute kidney injury, AKI; ileus). Results: The study included 169 patients, with a mean age of 64 ± 11.3 years. Following implementation of the intravenous fluid therapy protocol, there was a significant reduction in chloride and sodium loading. However, in the multivariable analysis, chloride administered (mmoL/kg) did not independently influence the length of stay; or rates of POPF, ileus, or AKI (p > 0.05). Conclusions: The findings suggested that a postoperative intravenous fluid therapy regimen did not significantly impact morbidity. Notably, there was a trend towards reduced length of stay within an increasingly comorbid patient cohort. This targeted fluid regimen appears to be safe for PD patients within the ERAS program. Further prospective research is needed to explore this area.

MicroRNA-146a Enhances Helicobacter pylori Induced Cell Apoptosis in Human Gastric Cancer Epithelial Cells

  • Wu, Kai;Yang, Liu;Li, Cong;Zhu, Chao-Hui;Wang, Xin;Yao, Yi;Jia, Yu-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권14호
    • /
    • pp.5583-5586
    • /
    • 2014
  • Helicobacter pylori (H. pylori) infection induces apoptosis in gastric epithelial cells, and this occurrence may link to gastric carcinogenesis. However, the regulatory mechanism of H. pylori-induced apoptosis is not clear. MicroRNA-146a has been implicated as a key regulator of the immune system. This report describes our discovery of molecular mechanisms of microRNA-146a regulation of apoptosis in human gastric cancer cells. We found that overexpression of microRNA-146a by transfecting microRNA-146a mimics could significantly enhance apoptosis, and this upregulation was triggered by COX-2 inhibition. Furthermore, we found that microRNA-146a density was positively correlated with apoptosis rates in H. pylori-positive gastric cancer tissues and intratumoral microRNA-146a density was negatively correlated with lymph node metastasis among H. pylori-positive gastric cancer patients. Understanding the important roles of microRNA-146a in regulating cell apoptosis in H. pylori infected human gastric cancer cells will contribute to the development of microRNA targeted therapy in the future.

Specificity of Intracellular Trans-Splicing Reaction by hTERT-Targeting Group I Intron

  • Jung, Heung-Su;Kwon, Byung-Su;Lee, Seong-Wook
    • Genomics & Informatics
    • /
    • 제3권4호
    • /
    • pp.172-174
    • /
    • 2005
  • Recent anti-cancer approaches have been based to target tumor-specifically associated and/or causative molecules such as RNAs or proteins. As this specifically targeted anti-cancer modulator, we have previously described a novel human cancer gene therapeutic agent that is Tetrahymena group I intron-based trans-splicing ribozyme which can reprogram and replace human telomerase reverse transcriptase (hTERT) RNA to selectively induce tumor-specific cytotoxicity in cancer cells expressing the target RNA. Moreover, the specific ribozyme has been shown to efficiently retard tumor tissues in xenograft mice which had been inoculated with hTERT-expressing human cancer cells. In this study, we assessed specificity of trans-splicing reaction in cells to evaluate the therapeutic feasibility of the specific ribozyme. In order to analyze the trans-spliced products by the specific ribozyme in hTERT-positive cells, RT, 5'-end RACE-PCR, and sequencing reactions of the spliced RNAs were employed. Then, whole analyzed products resulted from reactions only with the hTERT RNA. This study suggested that the developed ribozyme perform highly specific RNA replacement of the target RNA in cells, hence trans-splicing ribozyme will be one of specific agents for genetic approach to revert cancer.

Mitochondrial metabolism in cancer stem cells: a therapeutic target for colon cancer

  • Song, In-Sung;Jeong, Yu Jeong;Han, Jin
    • BMB Reports
    • /
    • 제48권10호
    • /
    • pp.539-540
    • /
    • 2015
  • It has been proposed that the selective elimination of cancer stem cells (CSCs) using targeted therapy could greatly reduce tumor growth, recurrence, and metastasis. To develop effective therapeutic targets for CSC elimination, we aimed to define the properties of CSC mitochondria, and identify CSC-mitochondria-specific targets in colon cancer. We found that colon CSCs utilize mitochondrial oxidative phosphorylation (OXPHOS) to produce ATP. We also found that forkhead box protein 1 (FOXM1)-induced peroxiredoxin 3 (PRDX3) maintains the mitochondrial function, and the FOXM1/PRDX3 mitochondrial pathway maintains survival of colon CSCs. Furthermore, FOXM1 induces CD133 (PROM1/prominin 1) expression, which maintains the stemness of colon CSCs. Together, our findings indicate that FOXM1, PRDX3, and CD133 are potential therapeutic targets for the elimination of CSCs in colon cancer.

Advancements of Common Gamma-Chain Family Cytokines in Cancer Immunotherapy

  • Alexandra A. Wolfarth;Swati Dhar;Jack B. Goon;Ugonna I. Ezeanya;Sara Ferrando-Martínez;Byung Ha Lee
    • IMMUNE NETWORK
    • /
    • 제22권1호
    • /
    • pp.5.1-5.22
    • /
    • 2022
  • The approval of immunotherapies such as checkpoint inhibitors (CPIs), adoptive cell therapies and cancer vaccines has revolutionized the way cancer treatment is approached. While immunotherapies have improved clinical outcome in a variety of tumor types, some cancers have proven harder to combat using single agents, underscoring the need for multi-targeted immunotherapy approaches. Efficacy of CPIs and cancer vaccines requires patients to have a competent immune system with adequate cell numbers while the efficacy of adoptive cellular therapy is limited by the expansion and persistence of cells after infusion. A promising strategy to overcome these challenges is combination treatment with common gamma-chain cytokines. Gamma-chain cytokines play a critical role in the survival, proliferation, differentiation and function of multiple immune cell types, including CD8 T-cells and NK cells, which are at the center of the anti-tumor response. While the short halflife of recombinant cytokines initially limited their application in the clinic, advancements in protein engineering have led to the development of several next-generation drug candidates with dramatically increased half-life and bioactivity. When combining these cytokines with other immunotherapies, strong evidence of synergy has been observed in preclinical and clinical cancer settings. This promising data has led to the initiation of 70 ongoing clinical trials including IL-2, IL-7, IL-15 and IL-21. This review summarizes the recent advancements of common gamma-chain cytokines and their potential as a cancer immunotherapy.

Prognostic Factors for Overall Survival in Patients With Metastatic Colorectal Carcinoma Treated With Vascular Endothelial Growth Factor-Targeting Agents

  • Cetin, Bulent;Kaplan, Mehmet Ali;Berk, Veli;Ozturk, Selcuk Cemil;Benekli, Mustafa;Isikdogan, Abdurrahman;Ozkan, Metin;Coskun, Ugur;Buyukberber, Suleyman
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권3호
    • /
    • pp.1059-1063
    • /
    • 2012
  • Objective: Angiogenesis represents a key element in the pathogenesis of malignancy. There are no robust data on prognostic factors for overall survival (OS) in patients with metastatic colorectal cancer treated with vascular endothelial growth factor (VEGF)-targeted therapy. The present study was conducted to establish a prognostic model for patients using an oxaliplatin-based or irinotecan-based chemotherapy plus bevacizumab in metastatic colorectal cancer. Methods: Baseline characteristics and outcomes on 170 patients treated with FOLFIRI or XELOX plus anti-VEGF therapy-naive metastatic colorectal cancer were collected from three Turkey cancer centers. Cox proportional hazards regression was used to identify independent prognostic factors for OS. Results: The median OS for the whole cohort was 19 months (95% CI, 14.3 to 23.6 months). Three of the seven adverse prognostic factors according to the Anatolian Society of Medical Oncology (ASMO) were independent predictors of short survival: serum lactate dehydrogenase (LDH) greater than the upper limit of normal (ULN; p<0.001); neutrophils greater than the ULN (p<0.0014); and progression free survival (PFS) less than 6 months (p =0.001). Conclusion: Serum LDH and neutrophil levels were the main prognostic factors in predicting survival, followed by PFS. This model validates incorporation of components of the ASMO model into patient care and clinical trials that use VEGF-targeting agents.