• Title/Summary/Keyword: Target therapy

Search Result 1,133, Processing Time 0.044 seconds

Assessment of Compensator Thickness in Proton Therapy (양성자 치료 시 사용되는 Compensator의 Thickness에 대한 적정성 평가)

  • Park, Yong Soo;Jang, Jun Yeong;Cho, Gwang Hyeon;Park, Yong Cheol;Choi, Byeong Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.35-40
    • /
    • 2018
  • Purpose : The range of force differs from the size of proton energy used in our hospital. The compensator enables to change energy size based on distal thickness which also makes changes in dose rate. Therefore, the purpose of this study is to evaluate the effect of changing the thickness of compensator distal on dose range and beam on time. Subject and Methodology : Five low energy patients who have received proton therapy were selected as subjects for this study. Beam on was checked for the selected patients during the existing therapy. After then, the thickness of distal of compensator was increased by 2 cm up to 14 cm through proton therapy plan system(TPS) for comparative analysis. For the evaluation of dose range, the value of the target's conformity index(CI) and the maximum dose of rear side target's organ at risk(OAR) were compared. Furthermore, to evaluate the effect of therapy time, beam on time was compared by making compensator distal in each thickness. Result : The result of homogeneity index and conformity index of the increased compensator distal showed the same level in all patients. The comparison results of OAR of target rear side showed 7 cGy at spine cord of abdomen at maximum, 88 cGy at eyeball's RT lens, 391 cGy at RT lens of nasal cavity 51 cGy at trachea of the mediastinum, and 661 cGy at a small bowl of the pelvis. The comparison results of the beam on time showed a reduction from 126 seconds to 62 seconds for the abdomen, from 105 seconds to 37 seconds for the eyeball, from 187 seconds to 134 seconds for nasal cavity, from 100 seconds to 40 seconds for mediastinum, from 440 seconds to 118 seconds for the pelvis. Conclusion : The research result showed that as the distal thickness of compensator increased, the size of energy increased. In addition, beam on decreased due to the increase of dose rate. It is expected that the result would help reduce the treatment time and increase the convenience of patients if it is applied to liver patients who need respiratorygated therapy and pediatric patients. However, distal penumbra increased as the size energy increased. Therefore, in treating cases where OAR is in the vicinity of the target rear side, the influence of penumbra should be taken into account in adjusting thickness level of the compensator in proton therapy plan.

  • PDF

Application of Stem Cells in Targeted Therapy of Breast Cancer: A Systematic Review

  • Madjd, Zahra;Gheytanchi, Elmira;Erfani, Elham;Asadi-Lari, Mohsen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2789-2800
    • /
    • 2013
  • Background: The aim of this systematic review was to investigate whether stem cells could be effectively applied in targeted therapy of breast cancer. Material and Method: A systematic literature search was performed for original articles published from January 2007 until May 2012. Results: Nine studies met the inclusion criteria for phase I or II clinical trials, of which three used stem cells as vehicles, two trials used autologous hematopoetic stem cells and in four trials cancer stem cells were targeted. Mesenchymal stem cells (MSCs) were applied as cellular vehicles to transfer therapeutic agents. Cell therapy with MSC can successfully target resistant cancers. Cancer stem cells were selectively targeted via a proteasome-dependent suicide gene leading to tumor regression. $Wnt/{\beta}$-catenin signaling pathway has been also evidenced to be an attractive CSC-target. Conclusions: This systematic review focused on two different concepts of stem cells and breast cancer marking a turning point in the trials that applied stem cells as cellular vehicles for targeted delivery therapy as well as CSC-targeted therapies. Applying stem cells as targeted therapy could be an effective therapeutic approach for treatment of breast cancer in the clinic and in therapeutic marketing; however this needs to be confirmed with further clinical investigations.

Gene Therapy for Oral Cancer

  • Chung, In-Jae
    • Biomolecules & Therapeutics
    • /
    • v.15 no.4
    • /
    • pp.273-280
    • /
    • 2007
  • New treatment approaches are needed to improve the effectiveness of oral cancer treatment, since surgical resection of the tumor in oral region causes various oral dysfunctions. The molecular biology of oral cancer has been progressively delineated. Concurrently, gene therapy techniques have been developed that allow targeting or replacement of dysfunctional genes in cancer cells, offering the potential to treat a wide range of cancer. Oral carcinoma is attractive target for gene therapy because of its accessibility. In this article, we review the current status of gene therapy as applied to oral carcinoma.

Injection therapy for management of temporomandibullar joint disorders (턱관절장애 치료를 위한 주사요법)

  • Jo, Sanghoon
    • The Journal of the Korean dental association
    • /
    • v.57 no.4
    • /
    • pp.222-232
    • /
    • 2019
  • Injection therapy can be used to treat the refractory and chronic pain situations that are not well responded to conventional therapy in TMD-patients. The target of injection is the intra-articular- and peri-articular tissue of joint and adjacent tissue like muscle. For the success of injectional therapy, selection of injection solution and technique is essential, so discussion will be done about that and one of the promising techniques of intra-articular injection, US-guided TMJ Intrar-articular injection, is also discussed.

  • PDF

Comparison of Target Localization Error between Conventional and Spiral CT in Stereotactic Radiosurgery

  • Kim, Jong-Sik;Ju, Sang-Kyu;Park, Young-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.12 no.1
    • /
    • pp.20-25
    • /
    • 2000
  • The accuracy of the target localization was evaluated by conventional and spiral CT in stereotactic radiosurgerv. Conventional and spiral CT images were obtained with geometrical phantom, which was designed to produce exact three-dimensional coordinates of several objects within 0.1mm error range. Geometrical phantom was attached by BRW headframe, intermediate head ring, and CT localizer. Twentv-seven slices of conventional CT image were scanned at 3 mm slice thickness. Spiral CT images were scanned at 3 mm slice thickness from the pitch value 1 to 3, and twenty-seven slices of image were obtained per each the pitch value. These CT images were transferred to a treatment planning system(X-knife, Radionics) by ethernet, Three-dimensional coordinates of these images measured from the treatment planning system were compared to known values of geometrical phantom. The mean localization error of the target localization of conventional CT was 1.4mm. In case of spiral CT, the error of the target localization was within 1.6mm from the pitch value 1 to 1.3, but was more than 30mm above the pitch value 1.5. In conclusion, as the localization error of spiral CT was increased in high pitch value compared to conventional CT, the application of spiral CT will be with caution in stereotactic radiosurgery.

  • PDF

Effect of Swing Limb Heel-Strike Accuracy on Force Modulation and EMG While Stepping over an Obstacle versus Initiating Gait from a Position of Quiet Stance (보통 보행과 장애물 보행 시작시 에서 발꿈치 닿기 (Heel-Strike)의 정확도가 힘 조절과 EMG 에 미치는 영향)

  • Kim Hyeong-Dong;Park Rae-Jun;Bae Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.2
    • /
    • pp.196-209
    • /
    • 2003
  • 본 연구의 목적은 보통 보행과 장애물 보행 시작시에 accuracy constraints, 즉 발꿈치 닿기(swing limb heel-strike)의 정확도가 힘판(forceplate) 상에서 힘의 조절 (force modulation)과 EMG에 어떠한 영향을 미치는지를 분석하는 것이다. 본 실험의 대상자는 힘판(forceplate)위에서 보통 보행과 장애물 보행을 하되, 대상자 앞에 놓인 표적(target)에 정확히 발꿈치 닫기 (heel-strike)를 하도록 유도되었다. 이 때 힘판 자료와 전경골근(tibialis anterior)및 가자미근 (soleus)의 근전도 (EMG)의 활동을 양쪽 다리에서 측정하였다. 대상자 앞에 놓인 표적 (target)에 정확한 발꿈치 닫기(heel-strike)가 요구되었을 때에는 발끝밀기(swing toe-off) 시간이 증가되었으며 힘판(forceplate)상에서의 peak farce와 slope to peak force 가 감소되는 것으로 나타났다. 전경골근 (tibialis anterior)의 활동역시 큰 차이로 감소하는 것으로 나타났다. 하지만 보통 보행과 장애물 보행시의 근전도 혹은 힘판상의 자료에는 큰 차이점이 없는 것으로 나타났다. 이러한 결과는 기존의 상지(upper extremity)에서 보여준 운동제어 (motor control)의 이론들이 하지(lower extremity)에서도 동일하게 적용될 수 있음을 보여주는 것이다.

  • PDF

Iodine-131 S values for use in organ dose estimation of Korean patients in radioiodine therapy

  • Yeom, Yeon Soo;Shin, Bangho;Choi, Chansoo;Han, Haegin;Kim, Chan Hyeong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.689-700
    • /
    • 2022
  • In the present study, iodine-131 S values (rT ← thyroid) were calculated for 30 target organs and tissues using the most recently developed Korean reference computational phantoms. The calculated S values were then compared with those of the International Commission on Radiological Protection (ICRP) reference computational phantoms to investigate the dosimetric impact of the Korean S values against those of the ICRP reference phantoms. The results showed significant differences in the S values due to the different anatomical/morphological characteristics between the Korean and ICRP reference phantoms. Most target organs/tissues showed that the S values of the Korean reference phantoms are lower than those of the ICRP reference phantoms, by up to about 4 times (male spleen and female thymus). Exceptionally, three target organs/tissues (gonads, thyroid, and extrathoracic region) showed that the S values of the Korean reference phantoms are greater, by 1.5-3.7 times. We expect that the S values calculated in the present study will be beneficially used to estimate organ/tissue doses of Korean patients under radioiodine therapy.

Target Therapy for Colorectal Cancer (대장암의 표적치료)

  • Lee, Kyung-Hee
    • Journal of Yeungnam Medical Science
    • /
    • v.23 no.2
    • /
    • pp.143-151
    • /
    • 2006
  • In the past decade, the median duration of survival among patients with advanced colorectal cancer has increased from 12 months to about 18 months, primarily as a results of the introduction of irinotecan and oxaliplatin. Advances in the understanding of the molecular mechanisms underlying the development and progression of cancer have resulted in the discovery of new therapeutic interventions that target specific molecular abnormalities. Their specificity, and therefore their potential to bind preferentially and modify tumor-specific targets, sparing normal tissues and causing fewer side-effects compared to conventional cytotoxic agents, makes them an attractive therapeutic option. The future of this approach for the treatment of solid tumors is promising.

  • PDF

Natural TACE (TNF-$\alpha$ Convertase) Inhibitor, Gelastatin Hydroxamate: Biological Evaluation and Target Validation

  • Chun, Tae-Gyu;Lee, Jin-Ha;An, Mi-Hyun;Park, Song-Kyu;Lee, Hee-Yeon;Han, Gyoon-Hee
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.173.1-173.1
    • /
    • 2003
  • One of attractive target for Rheumatoid Arthritis (RA) therapy is the cytokine, tumor necrosis factor-alpha (TNF-$\alpha$), which has been shown to be overproduced in the joint of RA patients. The clinical success of anti- TNFR biologics has validated TNF-$\alpha$ as a drug discovery target. Thus, inhibiting of formation of TNF-$\alpha$ has been emerged to an intriguing approach for RA therapy. TNF-$\alpha$ is processed from its membrane bound precursor by the metalloprotease TNF-$\alpha$ converting enzyme (TACE), Here, biological evaluation, mode of action of natural TACE inhibitor, Gelastatin hydroxamate, are addressed. (omitted)

  • PDF

Tumor Therapy Applying Membrane-bound Form of Cytokines

  • Kim, Young-Sang
    • IMMUNE NETWORK
    • /
    • v.9 no.5
    • /
    • pp.158-168
    • /
    • 2009
  • Tumor therapy using cytokines has been developed for last two decades. Several recombinant cytokines and tumor cell vaccines produced by cytokine gene transfer have been in clinical trials, but several side effects hamper routine clinical applications. Many cytokines are originally expressed as membrane-bound form and then processed to secretory form exerting paracrine effects. Though functional differences of these two types of cytokines are elusive yet, the membrane-bound form of cytokine may exert its effects on restricted target cells as a juxtacrine, which are in physical contacts. With the efforts to improve antitumor activities of cytokines in cancer patients, developing new strategies to alleviate life-threatening side effects became an inevitable goal of tumor immunologists. Among these, tumor cell vaccines expressing cytokines as membrane-bound form on tumor cell surface have been developed by genetic engineering techniques with the hope of selective stimulation of the target cells that are in cell-to-cell contacts. In this review, recent progress of tumor cell vaccines expressing membrane-bound form of cytokines will be discussed.