KIPS Transactions on Software and Data Engineering
/
v.8
no.9
/
pp.379-390
/
2019
In this paper, we propose a novel deep neural network model for Vision-and-Language Navigation (VLN) named LVLN (Landmark-based VLN). In addition to both visual features extracted from input images and linguistic features extracted from the natural language instructions, this model makes use of information about places and landmark objects detected from images. The model also applies a context-based attention mechanism in order to associate each entity mentioned in the instruction, the corresponding region of interest (ROI) in the image, and the corresponding place and landmark object detected from the image with each other. Moreover, in order to improve the success rate of arriving the target goal, the model adopts a progress monitor module for checking substantial approach to the target goal. Conducting experiments with the Matterport3D simulator and the Room-to-Room (R2R) benchmark dataset, we demonstrate high performance of the proposed model.
Journal of the Institute of Convergence Signal Processing
/
v.19
no.4
/
pp.192-198
/
2018
Recently, the use of drone has been increasing rapidly in many ways. A drone can capture remote objects efficiently so it is suitable for surveillance and security systems. This paper discusses three methods for detecting moving vehicles using a drone. We compare three target detection methods using a background frame, preceding frames, or moving average frames. They are subtracted from a current frame. After the frame subtraction, morphological filters are applied to increase the detection rate and reduce the false alarm rate. In addition, the false alarm region is removed based on the true size of targets. In the experiments, three moving vehicles were captured by a drone, and the detection rate and the false alarm rate were obtained by three different methods and the results are compared.
Yoo, Seon Woo;Ki, Min-Jong;Doo, A Ram;Woo, Cheol Jong;Kim, Ye Sull;Son, Ji-Seon
The Korean Journal of Pain
/
v.34
no.3
/
pp.339-345
/
2021
Background: Ultrasound-guided caudal epidural injection (CEI) is limited in that it cannot confirm drug distribution at the target site without fluoroscopy. We hypothesized that visualization of solution flow through the inter-laminar space of the lumbosacral spine using color Doppler ultrasound alone would allow for confirmation of drug distribution. Therefore, we aimed to prospectively evaluate the usefulness of this method by comparing the color Doppler image in the paramedian sagittal oblique view of the lumbosacral spine (LS-PSOV) with the distribution of the contrast medium observed during fluoroscopy. Methods: Sixty-five patients received a 10-mL CEI of solution containing contrast medium under ultrasound guidance. During injection, flow was observed in the LSPSOV using color Doppler ultrasonography, following which it was confirmed using fluoroscopy. The presence of contrast image at L5-S1 on fluoroscopy was defined as "successful CEI." We then calculated prediction accuracy for successful CEI using color Doppler ultrasonography in the LS-PSOV. We also investigated the correlation between the distribution levels measured via color Doppler and fluoroscopy. Results: Prediction accuracy with color Doppler ultrasonography was 96.9%. The sensitivity, specificity, positive predictive value, and negative predictive value were 96.7%, 100%, 100%, and 60.0%, respectively. In 52 of 65 patients (80%), the highest level at which contrast image was observed was the same for both color Doppler ultrasonography and fluoroscopy. Conclusions: Our findings demonstrate that color Doppler ultrasonography in the LS-PSOV is a new method for determining whether a drug solution reaches the lumbosacral region (i.e., the main target level) without the need for fluoroscopy.
Engagement is an important factor in the field of rehabilitation as it is a known factor that have a positive influence on functional gaining in people who receive rehabilitation therapy. Although a number of measurements for engagement have been recently developed, investigation of possible factors that may have influence on engagement is not well established. Currently available evidence suggests that engagement is affected by mood and it is hypothesized that a personal factor may contribute to engagement. Therefore, this study aims to test the hypothetical relationship between mood and engagement while performing a manual dexterity task through an experiment in healthy participants prior to investigation on people with medical condition who requires rehabilitation therapy. After inducing target mood (positive or negative mood) for study participants by asking them to recall autobiographical memories, change in muscle activity, which was operationalized as an indicator of engagement, was investigated. Electromyogram (EMG) was recorded from four muscle areas in non-dominant hand side to quantify muscle activity. The results show that the target moods were appropriately induced with the method. Although there were subtle differences in the level of engagement between different moods, certain variables derived from muscle activity were significantly different; mean amplitude for wrist extensor EMG showed significant difference between different moods (Z = -2.023, p < .05) indicating that muscle activities in the wrist extensor are greater for positive mood than negative mood region during manual dexterity task. Meanwhile, performance outcomes of Minnesota Manual Dexterity Test (MMDT), such as mean completion time and number of errors, between moods showed no significant difference in two different moods, resulting in MMDT administration may not be useful task in distinguishing the level of rehabilitation engagement.
Background and Objectives The ultimate goal in current skin rejuvenation practice is to achieve a good result with minimal pain and downtime. Nonablative skin rejuvenation (NSR) is one technique. The efficacy of the long-pulsed 1064 nm Nd:YAG laser (LPNDY) has not been assessed in NSR. Materials and Methods Three target areas were selected (bilateral cheeks and glabellar region) in six volunteer subjects. A LPNDY with an integral skin temperature monitor delivered three stacked shots to each target area (1064 nm, 12 mm spot, 13 J/cm2, 1 Hz) without any skin cooling or anesthesia. The skin temperature was recorded before, during, and after each set of shots using the system monitor and in real-time using a high-sensitivity (±0.001℃) near-infrared video camera. The skin reaction was observed with the naked eye, and pain and discomfort were assessed by the subjects during and after treatment. Results The subjects reported a mild feeling of heat with no discomfort during or after the test treatments. Mild erythema was observed around the treatment areas, without noticeable edema. A series of three ascending skin temperature stepwise peaks, with a decrease in skin temperature towards the baseline after the third shot, was observed consistently. The mean temperatures for shots 1, 2, and 3 for the cheeks were 39.5℃, 42.0℃, and 44.4℃, respectively, and for the glabella, 40.8℃, 43.9℃, and 46.2℃, respectively. Similar ranges were indicated on the system integral temperature monitor. Conclusion A set of three stacked pulses with the LPNDY at a low fluence achieved ideal dermal temperatures to achieve some dermal remodeling but without any downtime or adverse events. The temperature data from the integral thermal sensor matched the video camera measurements with practical accuracy for skin rejuvenation requirements. These data suggest that LPNDY would satisfy the necessary criteria to achieve effective NSR, but further studies will be needed to assess the actual results in clinical practice.
This paper presents a vibration displacement measurement and damage identification method for a space truss structure from its vibration videos. Features from Accelerated Segment Test (FAST) algorithm is combined with adaptive threshold strategy to detect the feature points of high quality within the Region of Interest (ROI), around each node of the truss structure. Then these points are tracked by Kanade-Lucas-Tomasi (KLT) algorithm along the video frame sequences to obtain the vibration displacement time histories. For some cases with the image plane not parallel to the truss structural plane, the scale factors cannot be applied directly. Therefore, these videos are processed with homography transformation. After scale factor adaptation, tracking results are expressed in physical units and compared with ground truth data. The main operational frequencies and the corresponding mode shapes are identified by using Subspace Stochastic Identification (SSI) from the obtained vibration displacement responses and compared with ground truth data. Structural damages are quantified by elemental stiffness reductions. A Bayesian inference-based objective function is constructed based on natural frequencies to identify the damage by model updating. The Success-History based Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE) is applied to minimise the objective function by tuning the damage parameter of each element. The locations and severities of damage in each case are then identified. The accuracy and effectiveness are verified by comparison of the identified results with the ground truth data.
Deep-learning-based image segmentation is one of the most widely employed lane detection approaches, and it requires a post-process for extracting the key points on the lanes. A general approach for key-point extraction is using a fixed threshold defined by a user. However, finding the best threshold is a manual process requiring much effort, and the best one can differ depending on the target data set (or an image). We propose a novel key-point extraction algorithm that automatically adapts to the target image without any manual threshold setting. In our adaptive key-point extraction algorithm, we propose a line-level normalization method to distinguish the lane region from the background clearly. Then, we extract a representative key point for each lane at a line (row of an image) using a kernel density estimation. To check the benefits of our approach, we applied our method to two lane-detection data sets, including TuSimple and CULane. As a result, our method achieved up to 1.80%p and 17.27% better results than using a fixed threshold in the perspectives of accuracy and distance error between the ground truth key-point and the predicted point.
International conference on construction engineering and project management
/
2022.06a
/
pp.877-885
/
2022
Vision-based activity recognition has been widely attempted at construction sites to estimate productivity and enhance workers' health and safety. Previous studies have focused on extracting an individual worker's postural information from sequential image frames for activity recognition. However, various trades of workers perform different tasks with similar postural patterns, which degrades the performance of activity recognition based on postural information. To this end, this research exploited a concept of human-object interaction, the interaction between a worker and their surrounding objects, considering the fact that trade workers interact with a specific object (e.g., working tools or construction materials) relevant to their trades. This research developed an approach to understand the context from sequential image frames based on four features: posture, object, spatial features, and temporal feature. Both posture and object features were used to analyze the interaction between the worker and the target object, and the other two features were used to detect movements from the entire region of image frames in both temporal and spatial domains. The developed approach used convolutional neural networks (CNN) for feature extractors and activity classifiers and long short-term memory (LSTM) was also used as an activity classifier. The developed approach provided an average accuracy of 85.96% for classifying 12 target construction tasks performed by two trades of workers, which was higher than two benchmark models. This experimental result indicated that integrating a concept of the human-object interaction offers great benefits in activity recognition when various trade workers coexist in a scene.
Kim, Jaewon;Park, Hye Jung;Lee, Won Ihl;Won, Sun Jae
Clinical Pain
/
v.18
no.2
/
pp.59-64
/
2019
Objective: This study evaluated the feasibility of ultrasound-guided lumbar nerve root block (LNRB) and S1 nerve root block by identifying spread patterns via fluoroscopy in cadavers. Method: A total of 48 ultrasound-guided injections were performed in 4 fresh cadavers from L1 to S1 roots. The target point of LNRB was the midpoint between the lower border of the transverse process and the facet joint at each level. The target point of S1 nerve root block was the S1 foramen, which can be visualized between the median sacral crest and the posterior superior iliac spine, below the L5-S1 facet joint. The injection was performed via an in-plane approach under real-time axial view ultrasound guidance. Fluoroscopic validation was performed after the injection of 2 cc of contrast agent. Results: The needle placements were correct in all injections. Fluoroscopy confirmed an intra-foraminal contrast spreading pattern following 41 of the 48 injections (85.4%). The other 7 injections (14.6%) yielded typical neurograms, but also resulted in extra-foraminal patterns that occurred evenly in each nerve root, including S1. Conclusion: Ultrasound-guided injection may be an option for the delivery of injectate into the S1 nerve root, as well as lumbar nerve root area.
Accurate and efficient microbial diagnosis is crucial for effective molecular diagnostics, especially in the field of human healthcare. The gold standard equipment widely employed for detecting specific microorganisms in molecular diagnosis is quantitative real-time polymerase chain reaction (qRT-PCR). However, its limitations in low metagenomic DNA yield samples necessitate exploring alternative approaches. Digital PCR, by quantifying the number of copies of the target sequence, provides absolute quantification results for the bacterial strain. In this study, we compared the diagnostic efficiency of qRT-PCR and digital PCR in detecting a particular bacterial strain (Staphylococcus aureus), focusing on skin-derived DNA samples. Experimentally, specific primer for S. aureus were designed at transcription elongation factor (greA) gene and the target amplicon were cloned and sequenced to validate efficiency of specificity to the greA gene of S. aureus. To quantify the absolute amount of microorganisms present on the skin, the variable region 5 (V5) of the 16S rRNA gene was used, and primers for S. aureus identification were used to relative their amount in the subject's skin. The findings demonstrate the absolute convenience and efficiency of digital PCR in microbial diagnostics. We suggest that the high sensitivity and precise quantification provided by digital PCR could be a promising tool for detecting specific microorganisms, especially in skin-derived DNA samples with low metagenomic DNA yields, and that further research and implementation is needed to improve medical practice and diagnosis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.