• Title/Summary/Keyword: Target plate

Search Result 302, Processing Time 0.032 seconds

Experimental Investigation of the CHF for the Narrow Rectangular Channel in the Downward Flow (좁은 사각 유로 내 하향류 유동 조건에서 임계열유속 실험 연구)

  • Kim, Hui Yung;Yun, Byong Jo;Bak, Jin Yeong;Park, Jong Hark;Chae, Heetaek;Park, Cheol
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.153-162
    • /
    • 2016
  • Experimental investigation was carried out on the CHF(Critical Heat Flux) under downward flow condition in narrow rectangular channels simulating subchannel of plate-type-fuel for JRTR(Jordan Research and Training Reactor). The experiments covers the license requirement of the research reactor. Two test sections used in this study simulate full scale subchannels for fission moly uranium target and plate-type-fuel, respectively. From the experimental results, the parameters affecting on the CHF are investigated. By using experimental data, the existing CHF prediction models were evaluated. Finally, the applicability of correlations were analysed to predict CHF in the narrow rectangular channel under the downward flow condition.

Study on the Lapping Characteristics of Sapphire Wafer by using a Fixed Abrasive Plate (고정 입자 정반을 이용한 사파이어 기판의 연마 특성 연구)

  • Lee, Taekyung;Lee, Sangjik;Jo, Wonseok;Jeong, Haedo;Kim, Hyoungjae
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.44-49
    • /
    • 2016
  • Diamond mechanical polishing (DMP) is a crucial process in a sapphire wafering process to improve flatness and achieve the target thickness by using free abrasives. In a DMP process, material removal rate (MRR) is a key factor to reduce process time and cost. Controlling mechanical parameters, such as velocity and pressure, can increase the MRR in a DMP process. However, there are limitations of using high velocities and pressures for achieving a high MRR owing to their side effects. In this paper, we present the lapping characteristics and improvement of MRR by using a fixed abrasive plate through an experimental study. The change in MRR as a function of velocity and pressure follows Preston's equation. The surface roughness of a wafer decreases as the plate velocity and pressure increases. We observe a sharp decrease in MRR over the lapping time at a high velocity and pressure in the velocity and pressure test. An analysis of surface roughness (Rq and Rpk) indicates that wear of abrasives decreases the MRR sharply. In order to investigate the effect of abrasive wear on the MRR, we utilize a cutting fluid and a rough wafer. The cutting fluid delays the wear of abrasives resulting in improvement of MRR drop. The rough wafer maintains the MRR at a stable rate by self-dressing.

Suggestion of Flexural Strengthening Ratio of NSM Strengthened Concrete Railroad Bridge based on Probability and Reliability (확률.신뢰도에 기초한 표면매립보강(NSM) 콘크리트 철도교의 휨보강비 산정)

  • Oh, Hong-Seob;Sim, Jong-Sung;Ju, Min-Kwan;Lee, Ki-Hong;Park, Ji-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.121-124
    • /
    • 2008
  • The purpose of this study is to evaluate the critical strengthening ratio of concrete railroad bridge strengthened with NSM using CFRP plate. The railroad bridge is usually under vibration and impact in service state. Therefore, it is important that the effective strengthening performance must be exhibited under the service loading is acted. To widely apply the NSM method for the concrete railroad bridge in field, it needs that reasonable strengthening parameter such as strengthening ratio has to be investigated and evaluated when the strengthening design is conducted. In this study, to suggest more reasonable strengthening ratio, material and geometrical uncertainty was considered and applied by Monte Carlo Simulation (MSC) technique. Lastly, the critical strengthening ratio of concrete railroad bridge strengthened with NSM using CFRP plate was evaluated by using the limit state function with the target reliability index.

  • PDF

Quality Assurance System for Determination of Center Position in X-ray and Proton Irradiation Fields using a Stainless Ball and Imaging Plates in Proton Therapy at PMRC

  • Yasuoka, Kiyoshi;Ishikawa, Satoko
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.189-191
    • /
    • 2002
  • In the proton therapy using a gantry system, periodical verification of iso-center position is very important to assure precision of patient positioning system at any gantry angles in proton treatment. In the gantry system, there are three different types of iso-center; 1) in a geometrical view, 2) in an X-ray beam's eye view, 3) in a proton beam's eye view. Idealistically, they would be an identical point. They could, however, be different points. It may be a source of errors in patient positioning. At PMRC, we have established a system of verification for iso-center positions using a stainless ball of 2-cm in diameter and an imaging plate. This system provides the relation among a center of a patient target position, a center of proton irradiation field, and/or a center of X-ray field in accuracy of 50$\square$m in the 2) and 3) views, as images of a center of the stainless ball and a center of a 100 mm${\times}$100 mm-aperture brass collimator recorded on the imaging plate, which is setup at 1-cm behind the ball. In addition, it provides simultaneously the images of the ball and the collimator on an imaging intensifier (II), which is setup downstream of the proton or X-ray beam. We present a method of quality assurance (QA) for calibration of iso-center position in a rotation gantry system at PMRC and the performance of this system. A proton beam position on the 1$\^$st/ scatterer in the nozzle of the gantry affects less sensitive (reduced by a factor of 1/5) to the results of the iso-center position. The effect is systematically correctable. The effect of the nozzle (or the collimator) position is less than 0.5 mm at the maximum extraction (390 mm).

  • PDF

A Study on Field Application of Floating Breakwater with Compound Plate Type (복합판형 부소파제의 현지적용에 관한 연구)

  • Oh, Yoon-Seock;Choi, Nack-Hoon;Chen, Jae-Yeong;Kim, Do-Sam
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.285-289
    • /
    • 2006
  • Recently the target area for the installation of structures have been changed from shallow water into deep one by reservation and use of the wider coastal region, and development of deep water. Additionally, great emphasis in the improved human life quality has been placed on the necessities for the preservation of the agreeable natural and coastal environments and development waterfront, recreation, and resort in the sea. However, the existing gravity-type breakwater did not appropriately cope with the recent changes of circumstances, but required the enormous construction coat for coping with them. Until now, floating breakwuater, which was adequate for the environment and construction cost, has been actively studied in the other countries including Japan. This floating breakwater has been already constructed in many places and satisfactory in poor subsoil and deep water in Japan. Also it showed the same function as a gravity-type breakwater. But floating breakwater was not control long period waves by reason of constructive characteristic. The aim of this study is to discuss field application of Floating Breakwater with Compound Plate Type(FBCPT) in coastal region by using numerical analyses and hydraulic model test.

  • PDF

Effects of Groove Shape Dimension on Lapping Characteristics of Sapphire Wafer (정반 그루브의 형상치수가 사파이어 기판의 연마특성에 미치는 영향)

  • Lee, Taekyung;Lee, Sangjik;Jeong, Haedo;Kim, Hyoungjae
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.119-124
    • /
    • 2016
  • In the sapphire wafering process, lapping is a crucial operation in order to reduce the damaged layer and achieve the target thickness. Many parameters, such as pressure, velocity, abrasive, slurry and plate, affect lapping characteristics. This paper presents an experimental investigation on the effect of the plate groove on the material removal rate and roughness of the wafer. We select the spiral pattern and rectangular type as the groove shapes. We vary the groove density by controlling the groove shape dimension, i.e., the groove width and pitch. As the groove density increases to 0.4, the material removal rate increases and gradually reaches a saturation point. When the groove density is low, the pressing load is mostly supported by the thick film, and only a small amount acts on the abrasives resulting to a low material removal rate. The roughness decreases on increasing the groove density up to 0.3 because thick film makes partial participations of large abrasives which make deep scratches. From these results, we could conclude that the groove affects the contact condition between the wafer and plate. At the same groove density, the pitch has more influence on reducing the film thickness than the groove width. By decreasing the groove density with a smaller pitch and larger groove width, we could achieve a high material removal rate and low roughness. These results would be helpful in understanding the groove effects and determining the appropriate groove design.

Design and Fabrication of a Light-Guiding Plate for a Photobioreactor Utilizing a Hybrid LED Plus Sunlight Source (LED와 태양광 하이브리드 광원을 이용한 광생물 반응기용 도광판 설계 및 제작)

  • Lim, Hyon-Chol;Yang, Seung-Jin;Baek, Jun-Hyeok;Kim, Jae-Young;Jang, Kyungmin;Kim, Jongtye;Jeong, Sanghwa;Park, Jong-Rak
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.2
    • /
    • pp.73-80
    • /
    • 2016
  • In this paper, we report the results of a study on the design and fabrication of a light-guiding plate (LGP) using a hybrid light-emitting diode (LED) and sunlight source that can be applied to a photobioreactor. LGP patterns for the LED source were designed and engraved on an LGP, together with previously reported patterns for a sunlight source. A control system for the hybrid LGP was designed to maintain the output photon flux density (PFD) from the LGP at a constant value. When the target value of the output PFD was set to $70{\mu}E/(m^2{\cdot}s)$, the error range of the output PFD was found to be within ${\pm}2%$.

Seismic Performance Enhancement of Residential Flat Plate Structure by Using Base Isolation Devices. (면진장치를 사용한 주거용 무량판구조의 내진성능 향상)

  • Lee, Hyun Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.185-191
    • /
    • 2007
  • For the seismic performance enhancement of residential flat plate structure and for the selection of earthquake records, the possibility of base isolation is evaluated and the time history results are reviewed. By evaluating a base isolated stiffness, a target period, and an envelope curve analysis, seismic performance of structure, which has strong rotational mode, is evaluated. For the propriety evaluation of earthquake records usage and scaling method, time history analysis is done with variables such as DBE(design base earthquake) level, MCE(maximum considerable earthquake) level, and 1.4DBE level. From the analysis results, following conclusions can be made; the earthquake records, which are used in base isolation analysis, should be selected by similar soil type which the structure is considered, and should be intensity scaled in a range of mean ${\pm}$ standard deviation of code based design response spectrum.

Monte Carlo Calculation of Thermal Neutron Flux Distribution for (n, v) Reaction in Calandria (몬테칼로 코드를 이용한 중수로 Calandria에서의 $(n,\;{\gamma})$ 반응유발 열중성자속분포 계산)

  • Kim, Soon-Young;Kim, Jong-Kyung;Kim, Kyo-Youn
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.1
    • /
    • pp.13-22
    • /
    • 1994
  • The MCNP 4.2 code was used to calculate the thermal neutron flux distributions for $(n,\;{\gamma})$reaction in mainshell, annular plate, and subshell of the calandria of a CANDU 6 plant during operation. The thermal neutron flux distributions in calandria mainshell, annular plate, and subshell were in the range of $10^{11}{\sim}10^{13}\;neutrons/cm^2-sec$ which is somewhat higher than the previous estimates calculated by DOT 4.2 code. As an application to shielding analysis, photon dose rates outside the side and bottom shields were calculated. The resulting dose rates at the reactor accessible areas were below design target, $6 {\mu}Sv/h$. The methodology used in this study to evaluate the thermal neutron flux distribution for $(n,\;{\gamma})reaction$ can be applied to radiation shielding analysis of CANDU 6 type plants.

  • PDF

Adaptability Analysis of Granule Fertilizer Applicator for Rapeseed Broadcasting (입제 비료살포기의 유채 파종 적용성 분석)

  • Lee, C.K.;Choi, Y.;Jun, H.J.;Lee, C.S.;Kim, Y.J.;Lee, S.K.;Oh, S.H.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.2
    • /
    • pp.106-113
    • /
    • 2009
  • This study was carried out to test feasibility of a granule fertilizer applicator for rapeseed seeding in paddy fields. The metering plate of a conventional applicator was modified for rapeseed seeding. The modified plate had new three seeding openings with total area of $342mm^2$. Average target discharging rates ranged from 6.3 to 21.0 g/s and correlated with opening areas. Application patterns of the rapeseed seeding showed M-shape. The coefficients of variation of the application showed 70.5% at 0.99 m/s of forwarding speed and 14.3 g/s of a discharge rate, and 77.7% at 1.72 m/s of a forwarding speed and 8.23 g/s of a discharge rate. The coefficients of variation in the direction of transverse of the tractor ranged from 7.3 to 47.7%. In rapeseed seeding tests using the applicator, seed damages rates were less than 15% due to the agitator, the seed hopper and the seeding plate break. Therefore, improvements of the applicator blow heads and seeding equipments were required in order to apply rapeseed efficiently.