• Title/Summary/Keyword: Target localization

Search Result 305, Processing Time 0.027 seconds

A Study of the Localization and Classification of Target Using Ultrasonic Sensors (초음파 센서를 이용한 측정면의 분류와 위치 측정에 관한 연구)

  • Lim, Hee-Seop;Go, Min-Su;Lee, Eung-Hyuk;Hong, Seung-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.370-373
    • /
    • 2002
  • This paper proposes a new measurement system determine the localization and the type of object which use only three ultrasonic sensors, one the transmitter, one the receiver and one transduce doing both transmitter and receiver. this system can classifies the type and determines the pose of the target object. it used the method of Pseudoamplitude Scan. So it significantly simple the sensing system and reduce the signal processing time so that the working environment can be recognized in real time.

  • PDF

Joint Localization and Velocity Estimation for Pulse Radar in the Near-field Environments

  • Nakyung Lee;Hyunwoo Park;Daesung Park;Bukeun Byeon;Sunwoo Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.315-321
    • /
    • 2023
  • In this paper, we propose an algorithm that jointly estimates the location and velocity of a near-field moving target in a pulse radar system. The proposed algorithm estimates the location and velocity corresponding to the outcome of orthogonal matching pursuit (OMP) in a 4-dimensional (4D) location-velocity space. To address the high computational complexity of 4D parameter joint estimation, we propose an algorithm that iteratively estimates the target's 2D location and velocity sequentially. Through simulations, we analyze the estimation performance and verify the computational efficiency of the proposed algorithm.

Localization of Jet Engine Position from HRRP-JEM Images of Aircraft Targets Using Eccentricity of Complex-Valued Signals (항공기 표적의 HRRP-JEM 영상에서 복소 신호의 이심률을 이용한 제트 엔진 위치 추정)

  • Park, Ji-Hoon;Yang, Woo-Yong;Bae, Jun-Woo;Kang, Seong-Cheol;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1173-1180
    • /
    • 2013
  • High Resolution Range Profile-Jet Engine Modulation imagery first introduced in 2005 carries out radar target recognition by localizing the position of the jet engine installed on the aircraft target. This paper presents a new approach for estimating the jet engine position in the HRRP-JEM image based on the eccentricity of a complex signal. It can effectively evaluate the contribution of the JEM component to the radar received signal in a range bin of the HRRP-JEM image. Therefore, the localization is expected to be performed more quantitatively and reliably by pinpointing the range bin corresponding to the jet engine position where the JEM contribution is maximized. The simulation results of realistic aircraft models validated the effectiveness of the proposed concept.

Projection mapping onto multiple objects using a projector robot

  • Yamazoe, Hirotake;Kasetani, Misaki;Noguchi, Tomonobu;Lee, Joo-Ho
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.45-57
    • /
    • 2018
  • Even though the popularity of projection mapping continues to increase and it is being implemented in more and more settings, most current projection mapping systems are limited to special purposes, such as outdoor events, live theater and musical performances. This lack of versatility arises from the large number of projectors needed and their proper calibration. Furthermore, we cannot change the positions and poses of projectors, or their projection targets, after the projectors have been calibrated. To overcome these problems, we propose a projection mapping method using a projector robot that can perform projection mapping in more general or ubiquitous situations, such as shopping malls. We can estimate a projector's position and pose with the robot's self-localization sensors, but the accuracy of this approach remains inadequate for projection mapping. Consequently, the proposed method solves this problem by combining self-localization by robot sensors with position and pose estimation of projection targets based on a 3D model. We first obtain the projection target's 3D model and then use it to accurately estimate the target's position and pose and thus achieve accurate projection mapping with a projector robot. In addition, our proposed method performs accurate projection mapping even after a projection target has been moved, which often occur in shopping malls. In this paper, we employ Ubiquitous Display (UD), which we are researching as a projector robot, to experimentally evaluate the effectiveness of the proposed method.

A Study on Mine Localization of Forward Looking Sonar Considering the Effect of Underwater Sound Refraction (수중 음파 굴절효과를 고려한 전방주시소나 기뢰 위치 추정기법 연구)

  • Sul, Hoseok;Oh, Raegeun;Yang, Wonjun;Yoon, Young Geul;Choi, Jee Woong;Han, Sangkyu;Kwon, Bumsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.231-238
    • /
    • 2022
  • Mine detection has been mainly studied with images of the forward-looking sonar. Forward-looking sonar assumes the propagation path of the sound wave as a straight path, creating the surrounding images. This might lead to errors in the detection by ignoring the refraction of the sound wave. In this study, we propose a mine localization method that can robustly identify the location of mines in an underwater environment by considering the refraction of sound waves. We propose a method of estimating the elevation angle of arrival of the target echo signal in a single receiver, and estimate the mine location by applying the estimated elevation angle of arrival to ray tracing. As a result of simulation, the method proposed in this paper was more effective in estimating the mine localization than the existing method that assumed the propagation path as a straight line.

Evaluation of Accuracy on Hitchcoke CT/angio localization system using QA head phantom (QA용 두부 팬톰을 이용한 Hitchcoke CT 및 혈관조영 정위적 시스템에 대한 정확도 평가)

  • 김성현;서태석;윤세철;손병철;김문찬;신경섭
    • Progress in Medical Physics
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • In order to provide complementary image data, CT(computed tomography), MR(magnetic resonance) and angiography have been used in the field of Stereotactic Radiosurgery(SRS) and neurosurgery. The aim of this work is to develop 3-D stereotactic localization system in order to determine the precise shape, size and location of the lesion in the brain in the field of Stereotactic Radiosurgery(SRS) and neurosurgery using multi-image modality and multi purpose QA phantom. In order to obtain accurate position of a target, Hitchcoke stereotactic frame and CT/angiography localizers were rigidly attached to the phantom with nine targets dispersed in 3-D space. The algorithms to obtain a 3-D stereotactic coordinates of the target have been developed using the images of the geometrical phantom which were taken by CT/angiography. Positions of targets computed by our algorithms were compared to the absolute position assigned in the phantom. Outlines of targets on each CT image were superimposed each other on angiography images. A spatial mean distance errors were 1.02${\pm}$0.17mm for CT with a 512${\times}$512 matrix and 2mm slice thickness, 0.41${\pm}$0.05mm for angiogra- phy localization. The resulting accuracy in the target localization suggests that the developed system has enough Qualification for Stereotactic Radiosurgery (SRS).

  • PDF

A Study on the Accuracy Analysis of Position Measurement Target for Underground Facilities by Retro-reflection (재귀반사체를 이용한 지하시설물 위치측정 타깃의 정확도 분석에 관한 연구)

  • Min, Kwan Sik;Kim, Jae Myeong;Choi, Yun Soo
    • Spatial Information Research
    • /
    • v.21 no.1
    • /
    • pp.45-52
    • /
    • 2013
  • Recently 3D surveying is recommended to manage underground facilities systematically before refilling of site operation. As the demand of realtime localization increases, cost reduction and consistent data construction which are realizable by using one man surveying method with unmanned target, are necessary for constructing DB of all sorts of the underground facilities with more speediness and correctness. This study sets a goal to develop a new type of surveying target which allows realtime localization to be performed by one man, through making an optimum reflector(triangle, quadrangle, and semispherical shape) by using the retro-reflection principle of optical prism which is being used for surveying currently. The new surveying target makes realtime surveying possible. To check reliability of its data, the accuracy is compared with surveying coordination of total station for each type in a quantitative method. In the result, the usefulness of the reflector for Underground Facilities localization is proved. Thus the foundation for underground DB construction conducted by one man is established for acquisition of 3D location information in more efficient way through using unmanned target.

Initial Optimization of the RBFN with Time-Frequency Localization Using Genetic Algorithm (유전 알고리즘과 시간-주파수 지역화를 이용한 방사 기준 함수망의 초기 최적화)

  • 김성주;서재용;김용택;조현찬;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.221-224
    • /
    • 2001
  • In this paper, we propose the initial optimized structure of the Radial Basis Function Network which is more simple in the part on the structure and converges more faster than Neural Network with the analysis method using Time-Frequency Localization and genetic algorithm. When we construct the hidden node with the Radial Basis Function whose localization is similar with an approximation target function in the plane of the Time and Frequency, we have initial structure of RBFN, After that, we evaluate the parameters of RBF in the network and the parameters needed for the network is more a few. Finally, we make a good decision of the initial structure having an ability of approximation.

  • PDF

Automatic Mutual Localization of Swarm Robot Using a Particle Filter

  • Lee, Yang-Weon
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.4
    • /
    • pp.390-395
    • /
    • 2012
  • This paper describes an implementation of automatic mutual localization of swarm robots using a particle filter. Each robot determines the location of the other robots using wireless sensors. The measured data will be used for determination of the movement method of the robot itself. It also affects the other robots' self-arrangement into formations such as circles and lines. We discuss the problem of a circle formation enclosing a target that moves. This method is the solution for enclosing an invader in a circle formation based on mutual localization of the multi-robot without infrastructure. We use trilateration, which does require knowing the value of the coordinates of the reference points. Therefore, specifying the enclosure point based on the number of robots and their relative positions in the coordinate system. A particle filter is used to improve the accuracy of the robot's location. The particle filter is operates better for mutual location of robots than any other estimation algorithms. Through the experiments, we show that the proposed scheme is stable and works well in real environments.