• Title/Summary/Keyword: Target level of safety

Search Result 296, Processing Time 0.025 seconds

철도 안전목표 설성을 위한 안전투자 시점에 대한 연구 (A Study on Safety Investment Moment for Safety Target)

  • 곽상록
    • 한국안전학회지
    • /
    • 제32권5호
    • /
    • pp.122-128
    • /
    • 2017
  • Korean government announced long-term railway safety investment plan for the safety improvement by 2020. But no research have been done about differential analysis on railroad safety investment and safety improvement. In this study, recent 10 year data on safety investments and accident data are analysed for the differential analysis. Three main safety investments are analysed on regard to accident rate and accident fatalities. Three safety measures include level crossing accident, platform fatalities, and track trespass fatalities. About 90% of railway accident fatalities are caused by these three kind of accidents. Differential analysis shows about 4 to 6 years delay after railroad safety investment and safety improvement. This result can be utilized for the decision making on safety measures and safety target. Which required long term approach.

안전율을 이용한 직립 방파제의 활동에 대한 목표파괴수준 산정 (Evaluation of Target Failure Level on Sliding Mode of Vertical Breakwaters using Safety Factors)

  • 이철응
    • 한국해안·해양공학회논문집
    • /
    • 제22권2호
    • /
    • pp.112-119
    • /
    • 2010
  • 안전율을 이용하여 항만 구조물의 임의의 파괴모드에 대한 목표파괴/안전수준을 산정할 수 있는 Monte-Carlo 모의법이 제시되었다. 본 연구에서 제안한 해석법은 기존의 해석법과 다르게 단순히 결정론적 설계법으로 설계된 안전율에 대한 자료만을 이용하여 목표파괴/안전수준을 설정할 수 있다. 결정론적 설계법에서 사용되는 안전율과 신뢰성 설계법에서 사용되는 신뢰지수를 직접적으로 연결시켜줄 수 있는 수학적 모형들이 수립되었다. 비록 제한적인 자료를 사용하였음에도 불구하고 수립된 모형들을 직립 방파제의 활동 파괴모드에 적용하여, 유의목표파괴 수준이라는 개념으로 본 연구에서 산정한 직립 방파제의 활동 파괴모드에 대한 목표파괴수준이 최근 일본에서 제안된 결과와 매우 잘 일치하였다.

생애주기비용의 최소화에 의한 현수교의 목표안전수준 결정방법 (Decision Method on Target Safety Level in Suspension Bridges by Minimization of Life Cycle Cost)

  • 방명석
    • 한국안전학회지
    • /
    • 제24권2호
    • /
    • pp.62-68
    • /
    • 2009
  • Life Cycle Cost(LCC) is adopted to decide the target of safety level in designing suspension bridges. The LCC are evaluated considering two types of uncertainty; aleatory and epistemic. The nine alternative designs of suspension bridge are simulated to decide the safety level which can minimize the LCC. The LCC is calculated through the probability of failure and safety index including the uncertainty. This method results in the useful tool deciding the optimum safety level with minimal LCC as the main design factor.

소형 무인기 구조 안전계수 (Structural safety factor for small unmanned aircraft)

  • 김성준;이승규;김태욱
    • 한국항공운항학회지
    • /
    • 제25권2호
    • /
    • pp.12-17
    • /
    • 2017
  • Manned aircraft structural design is based on structural safety factor of 1.5, and this safety factor is equivalent to a probability of failure of between 10-2 and 10-3. The target failure probability of FARs is between 10-6 and 10-9 per flight according to aircraft type. NATO released STANAG 4703 to established the airworthiness requirements for small UAV which is less than 150kg. STANAG 4703 requires the Target Level of Safety according to MTOW. The requirements of failure probability for small UAV is between 10-4 and 10-5. In this paper, requirements of airworthiness certification for small UAV were investigated and the relationship of safety factors to the probability of structural failure is analyzed to reduce measure of safety factor and structural weight of unmanned aircraft.

공정안전향상을 위한 Safety Integrity Level의 적용 방향 (Towards the Application of Safety Integrity Level for Improving Process Safety)

  • 권혁면;박희철;천영우;박진형
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.64-69
    • /
    • 2012
  • The concept of SIL is applied in the most of all standards relating to functional system safety. However there are problems for the people to apply SIL to their plants. as these standards don't include sufficient informations. In this regards, this paper will suggest the direction of SIL application and concept based on IEC 61508 and IEC 61511. A Safety Integrity Level(SIL) is the discrete level(one out of possible fours), corresponding to a range of the probability of an E/E/PE (Electric/Electrical/Programmable Electrical) safety-related system satisfactorily performing the specific safety functions under all the stated conditions within a stated period of time. SIL can be divided into the target SIL(or required SIL) and the result SIL. The target SIL is determined by the risk analysis at the analysis phase of safety lifecycle and the result SIL is calculated during SIL verification at the realization phase of safety lifecycle. The target SIL is determined by the risk analysis like LOPA(Layer Of Protection Analysis), Risk Graph, Risk Matrix and the result SIL is calculated by HFT(Hardware Fault Tolerance), SFF(Safe Failure Fraction) and PFDavg(average Probability of dangerous Failure on Demand). SIL is applied to various areas such as process safety, machinery(road vehicles, railway application, rotating equipment, etc), nuclear sector which functional safety is applied. The functional safety is the part of the overall safety relating to the EUC and the EUC control system that depends on the correct functioning of the E/E/PE safety-related systems and other risk reduction measures. SIL is applied only to the functional safety of SIS(Safety Instrumented System) in safety. EUC is the abbreviation of Equipment Under Control and is the equipment, machinery, apparatus or plant used for manufacturing, process, transportation, medical or other activities.

Assessment of health risk associated with arsenic exposure from soil, groundwater, polished rice for setting target cleanup level nearby abandoned mines

  • Lee, Ji-Ho;Kim, Won-Il;Jeong, Eun-Jung;Yoo, Ji-Hyock;Kim, Ji-Young;Lee, Je-Bong;Im, Geon-Jae;Hong, Moo-Ki
    • 한국토양비료학회지
    • /
    • 제44권1호
    • /
    • pp.38-47
    • /
    • 2011
  • This study focused on health risk assessment via multi-routes of As exposure to establish a target cleanup level (TCL) in abandoned mines. Soil, ground water, and rice samples were collected near ten abandoned mines in November 2009. The As contaminations measured in all samples were used for determining the probabilistic health risk by Monte-Carlo simulation techniques. The human exposure to As compound was attributed to ground water ingestion. Cancer risk probability (R) via ground water and rice intake exceeded the acceptable risk range of $10^{-6}{\sim}10^{-4}$ in all selected mines. In particular, the MB mine showed the higher R value than other mines. The non-carcinogenic effects, estimated by comparing the average As exposure with corresponding reference dose were determined by hazard quotient (HQ) values, which were less than 1.0 via ground water and rice intake in SD, NS, and MB mines. This implied that the non-carcinogenic toxic effects, due to this exposure pathway had a greater possibility to occur than those in other mines. Besides, hazard index (HI) values, representing overall toxic effects by summed the HQ values were also greater than 1.0 in SD, NS, JA, and IA mines. This revealed that non-carcinogenic toxic effects were generally occurred. The As contaminants in all selected mines exceeded the TCL values for target cancer risk ($10^{-6}$) through ground water ingestion and rice intake. However, the As level in soil was greater than TCL value for target cancer risk via inadvertent soil ingestion pathway, except for KK mine. In TCL values for target hazard quotient (THQ), the As contaminants in soil did not exceed such TCL value. On the contrary, the As levels in ground water and polished rice in SD, NS, IA, and MB mines were also beyond the TCL values via ground water and rice intake. This study concluded that the health risks through ground water and rice intake were greater than those though soil inadvertent ingestion and dermal contact. In addition, it suggests that the abandoned mines to exceed the risk-based TCL values are carefully necessary to monitor for soil remediation.

군용무인기의 감항인증 목표안전수준 분석 (Target Level of Safety Analysis in Airworthiness Certification for Military UAV)

  • 이나래;전병일;장영근
    • 한국항공우주학회지
    • /
    • 제41권10호
    • /
    • pp.840-848
    • /
    • 2013
  • 군용항공기 감항인증은 감항성을 가지고 요구된 성능과 기능을 발휘할 수 있음에 대한 정부의 인증이다. 북대서양조약기구(NATO)는 최대이륙중량 150kg 이상의 군용무인기에 대한 감항인증 요구도인 STANAG-4671을 2009년에 배포하였다. 최근 150kg 미만의 소형무인기에 대한 감항인증 요구도인 STANAG-4703을 내부적으로 배포하여 검토 중에 있다. 우리나라는 국제적으로 통용되는 감항인증 기준인 STANAG-4671을 기타감항인증 기준으로 준용하여 군용무인기에 적용하고 있다. 하지만 STANAG-4671은 중량에 관계없이 동일한 목표안전수준을 요구하여 낮은 중량의 중 소형무인기에 대해서는 목표안전수준이나 설계 요구도가 과도하게 적용될 수 있다. 따라서 본 연구에서는 군용무인기 분류와 감항인증 기준을 분석하고, 지상피해 평가기법을 적용하여 최대이륙중량별 목표안전수준을 제시하였다.

안전무결성을 달성하기 위한 FMEDA 분석 기반 PESSRAE 설계 (Design of PESSRAE To Achieve Safety Integrity With FMEDA Analysis)

  • 허제호;김기봉;정기현;안석찬
    • 대한임베디드공학회논문지
    • /
    • 제17권3호
    • /
    • pp.157-165
    • /
    • 2022
  • As the number of the installed escalators in Korea continues to increase, the accident rate is also increasing. Therefore, it would be necessary to proactively secure safety. PESSRAE is a controller that implements safety functions as electric/electronic/programmable electronic devices to respond to risks that may occur in escalators. Safety Integrity Level (SIL) is assigned to the safety functions of PESSRAE and it must be verified that the quantitative target value according to the SIL level is satisfied. In this paper, the initial PESSRAE is analyzed using the FMEDA (Failure Mode, Effects and Diagnostic Analysis), which is a quantitative safety analysis method, and design improvement specifications are derived from the analysis in order to satisfy the quantitative target values. Based on the derived design specifications, the improved PESSRAE controller was manufactured. And the appropriateness of the design was verified experimentally in a testbed environment simulating the real environment.

터널 순응휘도와 경계부 휘도의 관계 연구 (Relationship between Adaptation Luminance and Threshold Zone Luminance for Vehicular Traffic Tunnels)

  • 조원범;정준화
    • 한국도로학회논문집
    • /
    • 제16권3호
    • /
    • pp.85-99
    • /
    • 2014
  • PURPOSES : This study has been performed with the objective to determine threshold zone luminance of adaptation luminance by target safety level in a vehicular traffic tunnel with design speed set at 100km/h. METHODS : The study made a miniature capable of portraying changes in luminance distribution within $2{\times}10^{\circ}$ conical field of view of the driver approaching to the tunnel for the test. Test conditions were set based on justifications for CIE 88-1990's threshold zone luminance used as a reference by domestic tunnel light standards (KS C 3703 : 2010). Luminance contrast of object background and object is 23%, object presentation duration is 0.5 seconds, and size of the object background is $7.3{\times}11.5m^2$ RESULTS : Threshold zone luminance was set within adaptation luminance of $100{\sim}3,000cd/m^2$. Adaptation luminance and threshold zone luminance based on 50%, 75% and 90% target safety level all showed a relatively high linear relationship. According to findings in the study, it is not appropriate to specify the relationship between adaptation luminance and threshold zone luminance as luminance ratio. Rather, direct utilization of the linear relationship gained from the study findings appears to be the better solution. CONCLUSIONS : Findings of this study may be used to determine operation of threshold zone luminance based on target safety level. However, a proper verification and validity of test results are required. Furthermore, a study to determine proper threshold zone luminance level considering target safety level reviewed in this study and various decision-making factors such as economic conditions in Korea and energy-related policies should be carried out in addition. Additional tests on adaptation luminance greater than $3,000cd/m^2$ will be performed, through which application scope of the test findings will be broadened.

Workers' Exposure to Indium Compounds at the Electronics Industry in Republic of Korea

  • Yi, Gwangyong;Jeong, Jeeyeon;Bae, Yasung;Shin, Jungah;Ma, Hyelan;Lee, Naroo;Park, Seung-Hyun;Park, Dooyong
    • Safety and Health at Work
    • /
    • 제12권2호
    • /
    • pp.238-243
    • /
    • 2021
  • Objectives: The aim of this study was to provide baseline data for the assessment of exposure to indium and to prevent adverse health effects among workers engaged in the electronics and related industries in Republic of Korea. Methods: Total (n = 369) and respirable (n = 384) indium concentrations were monitored using personal air sampling in workers at the following 19 workplaces: six sputtering target manufacturing companies, four manufacturing companies of panel displays, two companies engaged in cleaning of sputtering components, two companies dedicated to the cleaning of sputtering target, and five indium recycling companies. Results: The level of exposure to total indium ranged from 0.9 to 609.3 ㎍/m3 for the sputtering target companies; from 0.2 to 2,782.0 ㎍/m3 for the panel display companies and from 0.5 to 2,089.9 ㎍/m3 for the indium recycling companies. The level of exposure to respirable indium was in the range of 0.02 to 448.6 ㎍/m3 for the sputtering target companies; 0.01 to 419.5 ㎍/m3 for the panel display companies; and 0.5 to 436.3 ㎍/m3 for the indium recycling companies. The indium recycling companies had the most samples exceeding the exposure standard for indium, followed by sputtering target companies and panel display companies. Conclusions: The main finding from this exposure assessment is that many workers who handle indium compounds in the electronics industry are exposed to indium levels that exceed the exposure standards for indium. Hence, it is necessary to continuously monitor the indium exposure of this workforce and take measures to reduce its exposure levels.