• Title/Summary/Keyword: Target enrichment

Search Result 85, Processing Time 0.021 seconds

Case Studies on Special Programs in Elementary School Media Centers in Texas, U. S. A. (미국의 초등학교 도서관 특별 프로그램에 관한 사례 연구: 텍사스 주를 중심으로)

  • 정연경
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.13 no.2
    • /
    • pp.221-242
    • /
    • 2002
  • This study is about special programs for elementary school library media centers in Texas in the United States, that can be used as a way of activating the school library media center programs. Various special programs of the seven elementary school library media centers in Texas were selected for case studies and the types, purposes. frameworks, effects of the programs and the subjects were analyzed. Special programs were provided for exhibits and displays, featured speakers or entertainers, learning centers, demonstrations, and media in conjunction with book fair and curriculum. And the purposes of the programs were to support and enhance the curriculum. to provide personal enrichment and to provide professional development for teachers. The frameworks for the program were the special target group, curriculum needs, special theme. interest and entertainment within available time periods. The benefits of the programs were the highlights of the media center and the media specialist, increasing of the school library media center usage. classroom support and enrichment, broadening students' and teachers' interests. encouragement of the development of lifelong learners and the establishment of the good public relations. Therefore, we have to consider the development of the special programs as a method of activating the school library in Korea and it should be brought with the concern and support from the principals, teachers, parents, and community members.

  • PDF

Network pharmacology-based prediction of efficacy and mechanism of Chongmyunggongjin-dan acting on Alzheimer's disease (네트워크 약리학을 기반으로한 총명공진단(聰明供辰丹) 구성성분과 알츠하이머 타겟 유전자의 효능 및 작용기전 예측)

  • Bitna Kweon;Sumin Ryu;Dong-Uk Kim;Jin-Young Oh;Mi-Kyung Jang;Sung-Joo Park;Gi-Sang Bae
    • The Journal of Korean Medicine
    • /
    • v.44 no.2
    • /
    • pp.106-118
    • /
    • 2023
  • Objectives: Network pharmacology is a method of constructing and analyzing a drug-compound-target network to predict potential efficacy and mechanisms related to drug targets. In that large-scale analysis can be performed in a short time, it is considered a suitable tool to explore the function and role of herbal medicine. Thus, we investigated the potential functions and pathways of Chongmyunggongjin-dan (CMGJD) on Alzheimer's disease (AD) via network pharmacology analysis. Methods: Using public databases and PubChem database, compounds of CMGJD and their target genes were collected. The putative target genes of CMGJD and known target genes of AD were compared and found the correlation. Then, the network was constructed using Cytoscape 3.9.1. and functional enrichment analysis was conducted based on the Gene Ontology (GO) Biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways to predict the mechanisms. Results: The result showed that total 104 compounds and 1157 related genes were gathered from CMGJD. The network consisted of 1157nodes and 10034 edges. 859 genes were interacted with AD gene set, suggesting that the effects of CMGJD are closely related to AD. Target genes of CMGJD are considerably associated with various pathways including 'Positive regulation of chemokine production', 'Cellular response to toxic substance', 'Arachidonic acid metabolic process', 'PI3K-Akt signaling pathway', 'Metabolic pathways', 'IL-17 signaling pathway' and 'Neuroactive ligand-receptor interaction'. Conclusion: Through a network pharmacological method, CMGJD was predicted to have high relevance with AD by regulating inflammation. This study could be used as a basis for effects of CMGJD on AD.

Simultaneous Fluorimetric Determination of On-line Preconcentrated HANs, DCAD and TCAD by Using RPLC with a Postcolumn Derivatization System

  • Jung, Sung-Woon;Choi, Yong-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1783-1790
    • /
    • 2013
  • A simultaneous analytical method has been developed for the fluorimetric determination of haloacetonitriles (HANs) [dichloroacetonitrile (DCAN), trichloroacetonitrile (TCAN), dibromoacetonitrile (DBAN), haloacetamides [dichloroacetamide (DCAD), and trichloroacetamde (TCAD)] in drinking water by using the combined on-line perconcentration/reversed phase liquid chromatography (RPLC)-postcolumn detection system. This on-line perconcentration system was achieved by employing a precolumn packed with a commercial solid phase extraction (SPE) sorbent for the enrichment and purification of the target analytes. The haloacetonitriles and haloacetamides were separated on CN analytical column in a 7.5% methanol-0.02 M phosphate buffered mobile phase at pH 3. The column effluents were reacted with postcolumn reagents of ophthaldialdehyde (OPA) and sulfite ion at pH 11.5, to produce a highly fluorescent isoindole fluorophore, which were measured with a fluorescence detector. Under the optimized conditions for RPLC and the postcolumn derivatization system all of the coefficient of determination of the standard calibration curves for the target analytes were over 0.99 and had a linear range from 5 to 100 ${\mu}g/L$. The detection limits showed 1.6 ${\mu}g/L$ for DCAD, 0.1 ${\mu}g/L$ for TCAD, 0.6 ${\mu}g/L$ for DCAN, 1.6 ${\mu}g/L$ for TCAN and 1 ${\mu}g/L$ for DBAN, and the recoveries were ranged from 64 to 99% except for DCAD with precisions less than 4.9% in distilled water, and from 72(${\pm}4%$) to 116%(${\pm}2%$) in tap water.

Evolution of the Mir-155 Family and Possible Targets in Cancers and the Immune System

  • Xie, Guang-Bing;Liu, Wei-Jia;Pan, Zhi-Jun;Cheng, Tian-Yin;Luo, Chao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7547-7552
    • /
    • 2014
  • The mir-155 family is not only involved in a diversity of cancers, but also as a regulator of the immune system. However, the evolutionary history of this family is still unclear. The present study indicates that mir-155 evolved independently with lineage-specific gain of miRNAs. In addition, arm switching has occurred in the mir-155 family, and alternative splicing could produce two different lengths of ancestral sequences, implying the alternative splicing can also drive evolution for intragenic miRNAs. Here we screened validated target genes and immunity-related proteins, followed by analyzation of the mir-155 family function by high-throughput methods like the gene ontology (GO) and Kyoto Eneyclopedin of Genes and Genemes (KEGG) pathway enrichment analysis. The high-throughput analysis showed that the CCND1 and EGFR genes were outstanding in being significantly enriched, and the target genes cebpb and VCAM1 and the protein SMAD2 were also vital in mir-155-related immune reponse activities. Therefore, we conclude that the mir-155 family is highly conserved in evolution, and CCND1 and EGFR genes might be potential targets of mir-155 with regard to progress of cancers, while the cebpb and VCAM1 genes and the protein SMAD2 might be key factors in the mir-155 regulated immune activities.

GSK-J4-Mediated Transcriptomic Alterations in Differentiating Embryoid Bodies

  • Mandal, Chanchal;Kim, Sun Hwa;Kang, Sung Chul;Chai, Jin Choul;Lee, Young Seek;Jung, Kyoung Hwa;Chai, Young Gyu
    • Molecules and Cells
    • /
    • v.40 no.10
    • /
    • pp.737-751
    • /
    • 2017
  • Histone-modifying enzymes are key players in the field of cellular differentiation. Here, we used GSK-J4 to profile important target genes that are responsible for neural differentiation. Embryoid bodies were treated with retinoic acid ($10{\mu}M$) to induce neural differentiation in the presence or absence of GSK-J4. To profile GSKJ4-target genes, we performed RNA sequencing for both normal and demethylase-inhibited cells. A total of 47 and 58 genes were up- and down-regulated, respectively, after GSK-J4 exposure at a log2-fold-change cut-off value of 1.2 (p-value < 0.05). Functional annotations of all of the differentially expressed genes revealed that a significant number of genes were associated with the suppression of cellular proliferation, cell cycle progression and induction of cell death. We also identified an enrichment of potent motifs in selected genes that were differentially expressed. Additionally, we listed upstream transcriptional regulators of all of the differentially expressed genes. Our data indicate that GSK-J4 affects cellular biology by inhibiting cellular proliferation through cell cycle suppression and induction of cell death. These findings will expand the current understanding of the biology of histone-modifying enzymes, thereby promoting further investigations to elucidate the underlying mechanisms.

Analysis of the Active Compounds and Therapeutic Mechanisms of Yijin-tang on Meniere's Disease Using Network Pharmacology(I) (네트워크 약리학을 활용한 메니에르병에 대한 이진탕(二陳湯)의 활성 성분과 치료 기전 연구(I))

  • SunKyung Jin;Hae-Jeong Nam
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.36 no.1
    • /
    • pp.50-63
    • /
    • 2023
  • Objectives : This study used a network pharmacology approach to explore the active compounds and therapeutic mechanisms of Yijin-tang on Meniere's disease. Methods : The active compounds of Yijin-tang were screened via the TCMSP database and their target proteins were screened via the STITCH database. The GeneCard was used to establish the Meniere's disease-related genes. The intersection targets were obtained through Venny 2.1.0. The related protein interaction network was constructed with the STRING database, and topology analysis was performed through CytoNCA. GO biological function analysis and KEGG enrichment analysis for core targets were performed through the ClueGO. Results : Network analysis identified 126 compounds in five herbal medicines of Yijin-tang. Among them, 15 compounds(naringenin, beta-sitosterol, stigmasterol, baicalein, baicalin, calycosin, dihydrocapsaicin, formononetin, glabridin, isorhamnetin, kaempferol, mairin, quercetin, sitosterol, nobiletin) were the key chemicals. The target proteins were 119, and 7 proteins(TNF, CASP9, PARP1, CCL2, CFTR, NOS2, NOS1) were linked to Meniere's disease-related genes. Core genes in this network were TNF, CASP9, and NOS2. GO/KEGG pathway analysis results indicate that these targets are primarily involved in regulating biological processes, such as excitotoxicity, oxidative stress, and apoptosis. Conclusion : Pharmacological network analysis can help to explain the applicability of Yijin-tang on Meniere's disease.

Mechanism of Wenshen Xuanbi Decoction in the treatment of osteoarthritis based on network pharmacology and experimental verification

  • Hankun You;Siyuan Song;Deren Liu;Tongsen Ren;Song Jiang Yin;Peng Wu;Jun Mao
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.59-72
    • /
    • 2024
  • To investigate the mechanism of Wenshen Xuanbi Decoction (WSXB) in treating osteoarthritis (OA) via network pharmacology, bioinformatics analysis, and experimental verification. The active components and prediction targets of WSXB were obtained from the TCMSP database and Swiss Target Prediction website, respectively. OA-related genes were retrieved from GeneCards and OMIM databases. Protein-protein interaction and functional enrichment analyses were performed, resulting in the construction of the Herb-Component-Target network. In addition, differential genes of OA were obtained from the GEO database to verify the potential mechanism of WSXB in OA treatment. Subsequently, potential active components were subjected to molecular verification with the hub targets. Finally, we selected the most crucial hub targets and pathways for experimental verification in vitro. The active components in the study included quercetin, linolenic acid, methyl linoleate, isobergapten, and beta-sitosterol. AKT1, tumor necrosis factor (TNF), interleukin (IL)-6, GAPDH, and CTNNB1 were identified as the most crucial hub targets. Molecular docking revealed that the active components and hub targets exhibited strong binding energy. Experimental verification demonstrated that the mRNA and protein expression levels of IL-6, IL-17, and TNF in the WSXB group were lower than those in the KOA group (p < 0.05). WSXB exhibits a chondroprotective effect on OA and delays disease progression. The mechanism is potentially related to the suppression of IL-17 and TNF signaling pathways and the down-regulation of IL-6.

Critical Enhancement of Photothermal Effect by Integrated Nanocomposites of Gold Nanorods and Iron Oxide on Graphene Oxide

  • Yun, Kum-Hee;Seo, Sun-Hwa;Kim, Bo-Mi;Joe, Ara;Han, Hyo-Won;Kim, Jong-Young;Jang, Eue-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2795-2799
    • /
    • 2013
  • Irradiation of gold nanorods (GNRs) with laser light corresponding to the longitudinal surface plasmon oscillation results in rapid conversion of electromagnetic energy into heat, a phenomenon commonly known as the photothermal effect of GNRs. Herein, we propose a facile strategy for increasing the photothermal conversion efficiency of GNRs by integration to form graphene oxide (GO) nanocomposites. Moreover, conjugation of iron oxide (IO) with the GO-GNR nanohybrid allowed magnetic enrichment at a specific target site and the separated GO-IO-GNR assembly was rapidly heated by laser irradiation. The present GO-IO-GNR nanocomposites hold great promise for application in various biomedical fields, including surface enhanced Raman spectroscopy imaging, photoacoustic tomography imaging, magnetic resonance imaging, and photothermal cancer therapy.

R&D ACTIVITIES FOR PARTITIONING AND TRANSMUTATION IN KOREA

  • Yoo, Jae-Hyung;Song, Tae-Young
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.150-164
    • /
    • 2004
  • According to the Korean long-term plan for nuclear technology development, KAERI is conducting a few R&D projects related to the proliferation-resistant back-end fuel cycle. The R&D activities for the back-end fuel cycle are reviewed in this work, especially focusing on the study of the partitioning and transmutation(P&T) of long-lived radionuclides. The P&T study is currently being carried out in order to develop key technologies in the areas of partitioning and transmutation. The partitioning study is based on the development of pyroprocessing such as electrorefining and electrowinning because they can be adopted as proliferation-resistant technologies in the fuel cycle. In this study, various behaviors of the electrodeposition of uranium and rare earth elements in the LiCl-KCl electrorefining system have been examined through fundamental experimental work. As for the transmutation system, KAERI is studying the HYPER (HYbrid Power Extraction Reactor), a kind of subcritical reactor which will be connected with a proton accelerator. Up to now, a conceptual study has been carried out for the major elemental systems of the subcritical reactor such as core, transuranic fuel, long-lived fission product target, and the Pb-Bi cooling system, etc. In order to enhance the transmutation efficiency of the transuranic elements as well as to strengthen the reactor safety, the reactor core was optimized by determining its most suitable subcriticality, the ratio of height/diameter, and by introducing the concepts of optimum core configuration with a transuranic enrichment as well as a scattered reloading of the fuel assemblies.

  • PDF

A novel model of THO/TREX loading onto target RNAs in metazoan gene expression

  • Hur, Junho K.;Chung, Yun Doo
    • BMB Reports
    • /
    • v.49 no.7
    • /
    • pp.355-356
    • /
    • 2016
  • The THO/TREX complex consists of several conserved subunits and is required for mRNA export. In metazoans, THO/TREX binds a subset of mRNAs during RNA splicing, and facilitates their nuclear export. How THO/TREX selects RNA targets is, however, incompletely understood. In our recent study, we reported that THO is loaded onto Piwi-interacting RNA (piRNA) precursor transcripts independent of splicing, and facilitates convergent transcription in Drosophila ovary. The precursors are later processed into mature piRNAs, small noncoding RNAs that silence transposable elements (TEs). We observed that piRNAs originating from dual-strand clusters, where precursors are transcribed from both strands, were specifically affected by THO mutation. Analysis of THO-bound RNAs showed enrichment of dual-strand cluster transcripts. Interestingly, THO loading onto piRNA precursors was dependent on Cutoff (Cuff), which comprises the Rhino-Deadlock-Cutoff (RDC) complex that is recruited to dual-strand clusters by recognizing H3K9me3 and licenses convergent transcription from he cluster. We also found that THO mutation affected transcription from dual-strand clusters. Therefore, we concluded that THO/TREX is recruited to dual-strand piRNA clusters, independent of splicing events, via multi-protein interactions with chromatin structure. Then, it facilitates transcription likely by suppressing premature termination to ensure adequate expression of piRNA precursors.