• Title/Summary/Keyword: Target direction detection

Search Result 75, Processing Time 0.02 seconds

Phase Error Decrease Method for Target Direction Detection Improvement (표적 방향 탐지 향상을 위한 위상 오차 감소 방법)

  • Lee, Min-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.7-13
    • /
    • 2021
  • This paper proposes a method to minimize the target's direction detection error using RADAR. The radar system cannot accurately detect the target direction due to the phase error of he received signal. The proposed method of this study obtains a phase by applying an root mean square to each antenna incident signal, and reduces the phase error by using an optimal signal to noise ratio. In the simulation result, the probability of detecting the target direction is the best when the antenna spacing is half wavelength. The conventional method of direction detection probability 10-1.7 and the proposed method is 10-3.3. The target detection direction of the existing method represents [-8°,8°] with an error of 2 degrees. The target detection direction of the proposed method is shown in [-10°,10°], and all target directions are accurately detected. In the future, There is need for a method to reduce the phase error even though the resolution decrease.

A Study on Phase Bearing Error using Phase Delay of Relative Phase Difference

  • Lee, Kwan Hyeong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.76-81
    • /
    • 2021
  • This study proposes a method to reduce the phase error of the received signal to detect the object bearing. The phase shift of the received signal occurs due to the multipath of the signal by natural structure or artificial structures. When detecting the direction of the object using radio waves, the phase of the received signal cannot be accurately detected because of the phase bearing error in the object detection direction. The object detection direction estimation depends on the phase difference, antenna installation distance, signal source wavelength, frequency band and bearing angle. This study reduces the error of the phase bearing by using the phase delay of the relative phase difference for the signals incident on the two antennas. Through simulation, we analyzed the object direction detection performance of the proposed method and the existing method. Three targets are detected from the [-15°, 0°, 15°] direction. The existing method detects the target at [-13°, 3°, 17°], and the proposed method detects the at [-15°, 0°, 15°]. As a result of the simulation, the target detection direction of the proposed method is improved by 2 degrees compared to the existing method.

Target signal detection using MUSIC spectrum in noise environments (MUSIC 스펙트럼을 이용한 잡음환경에서의 목표 신호 구간 검출)

  • Park, Sang-Jun;Jeong, Sang-Bae
    • Phonetics and Speech Sciences
    • /
    • v.4 no.3
    • /
    • pp.103-110
    • /
    • 2012
  • In this paper, a target signal detection method using multiple signal classification (MUSIC) algorithm is proposed. The MUSIC algorithm is a subspace-based direction of arrival (DOA) estimation method. Using the inverse of the eigenvalue-weighted eigen spectra, the algorithm detects the DOAs of multiple sources. To apply the algorithm in target signal detection for GSC-based beamforming, we utilize its spectral response for the DOA of the target source in noisy conditions. The performance of the proposed target signal detection method is compared with those of the normalized cross-correlation (NCC), the fixed beamforming, and the power ratio method. Experimental results show that the proposed algorithm significantly outperforms the conventional ones in receiver operating characteristics (ROC) curves.

A Direction Finding Proximity Fuze Sensor for Anti-air Missiles (방향 탐지용 전파형 대공 근접 신관센서)

  • Choi, Jae-Hyun;Lee, Seok-Woo;An, Ji-Yeon;Yeom, Kyung-Whan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.613-621
    • /
    • 2013
  • This paper presents the direction finding proximity fuze sensor using the clutter rejection method and the adaptive target detection algorithm for anti-air missiles. To remove effects by clutter and detect a target accurately, the clutter rejection method of Legendre sequence with BPSK(Bi phase Shift Keying) modulation has been proposed and the Doppler signal which has cross correlation characteristics is obtained from reflected target signals. Considering the change of the Doppler signal, the adaptive target detection algorithm has been developed and the direction finding algorithm has been fulfilled by comparing received powers from adjacent three receiving antennas. The encounter simulation test apparatus was made to collect and analyze reflected signal and test results showed that the -10 dBsm target was detected over 10 meters and the target with mesh clutter was detected and direction was distinguished definitely.

A Study on Target Direction and Rage Estimation using Radar Single Pulse (레이더 단일 펄스를 이용한 목표물 방향과 거리 추정에 대한 연구)

  • Lee, Kwan-Hyeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.107-112
    • /
    • 2014
  • In this paper, we analysed a performance signal to noise ratio about pulse, integration coherent, and integration non coherent system in radar system. It compared existing with proposal method in order to estimation two target direction of arrival. Generally, radar system radiate pulse wave in order to decreasing distortion of return wave and transmission wave. We analysed the performance integration coherent and integration non coherent. Integration coherent is processing system before doing envelop detection, and integration non coherent is processing system after doing envelop detection. Through simulation, we analysed a performance signal to noise ratio to estimation two target range detection and estimated target direction of arrival. We showed that integration coherent system is the most good performance.

A Technology of Information Data Fusion between Radar and ELINT System

  • Lim, Joong-Soo
    • International Journal of Contents
    • /
    • v.3 no.4
    • /
    • pp.22-25
    • /
    • 2007
  • This paper presents a technology of information data fusion between radar and ELINT electronic intelligence system. adar get the information of the range, direction and velocity of targets, and ELINT system get the information of the direction and angular velocity of the same targets at the same place and at the same time. Since we have some common information data of targets from radar and ELINT system, we can find the target on radar is same or not on ELINT system using the information data fusions. If the target on the radar is verified with the same target on ELINT system, we get more information of the target. e can analysis and identify the target exactly and reduce an ambiguity error of unknown targets.

Design of a BPSK Transceiver for the Direction Finding Proximity Fuze Sensor for Anti-air missiles (방향 탐지용 대공 근접 신관센서의 BPSK 송수신기 설계에 관한 연구)

  • Choi, Jae-Hyun;Lee, Seok-Woo;Yeom, Kyung-Whan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.81-88
    • /
    • 2013
  • This paper describes the fundamentals, design, realization and test results of a BPSK(Bi Phase Shift Keying) transceiver for the direction finding proximity fuze sensor for anti-aircrafts or air missiles. The BPSK transceiver for the direction finding fuze sensor has been designed to detect a moving target by Doppler signal processing with the code correlation method and to distinguish direction by comparing received powers of each Doppler signal from adjacent three receiving antennas. The electrical and ESS(Environmental Stress Screening) tests of the BPSK transceiver showed satisfactory results and target detection and direction finding performances proved to be successful through dynamic operation tests by 155 mm gun firing.

Detection of Human Vital Signs and Estimation of Direction of Arrival Using Multiple Doppler Radars

  • An, Yong-Jun;Jang, Byung-Jun;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.250-255
    • /
    • 2010
  • This paper presents a non-contact measurement method of vital signal by the use of multiple-input multiple-output (MIMO) bio-radar system, configured with two antennas that are separated by a certain distance. The direction of arrival (DOA) estimation algorithm for coherent sources was applied to detect vital signals coming from different spatial angles. The proposed MIMO bio-radar system was composed of two identical transceivers sharing single VCO with a PLL. In order to verify the performance of the system, the DOA estimation experiment was completed with respect to the human target at angles varying between $-50^{\circ}$ and $50^{\circ}$ where the bio-radar system was placed at distances (corresponding to 50 cm and 95 cm) in front of a human target. The proposed MIMO bio-radar system can successfully find the direction of a human target.

A Novel GNSS Spoofing Detection Technique with Array Antenna-Based Multi-PRN Diversity

  • Lee, Young-Seok;Yeom, Jeong Seon;Noh, Jae Hee;Lee, Sang Jeong;Jung, Bang Chul
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.3
    • /
    • pp.169-177
    • /
    • 2021
  • In this paper, we propose a novel global navigation satellite system (GNSS) spoofing detection technique through an array antenna-based direction of arrival (DoA) estimation of satellite and spoofer. Specifically, we consider a sophisticated GNSS spoofing attack scenario where the spoofer can accurately mimic the multiple pseudo-random number (PRN) signals since the spoofer has its own GNSS receiver and knows the location of the target receiver in advance. The target GNSS receiver precisely estimates the DoA of all PRN signals using compressed sensing-based orthogonal matching pursuit (OMP) even with a small number of samples, and it performs spoofing detection from the DoA estimation results of all PRN signals. In addition, considering the initial situation of a sophisticated spoofing attack scenario, we designed the algorithm to have high spoofing detection performance regardless of the relative spoofing signal power. Therefore, we do not consider the assumption in which the power of the spoofing signal is about 3 dB greater than that of the authentic signal. Then, we introduce design parameters to get high true detection probability and low false alarm probability in tandem by considering the condition for the presence of signal sources and the proximity of the DoA between authentic signals. Through computer simulations, we compare the DoA estimation performance between the conventional signal direction estimation method and the OMP algorithm in few samples. Finally, we show in the sophisticated spoofing attack scenario that the proposed spoofing detection technique using OMP-based estimated DoA of all PRN signals outperforms the conventional spoofing detection scheme in terms of true detection and false alarm probability.

Error analysis of acoustic target detection and localization using Cramer Rao lower bound (크래머 라오 하한을 이용한 음향 표적 탐지 및 위치추정 오차 분석)

  • Park, Ji Sung;Cho, Sungho;Kang, Donhyug
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.218-227
    • /
    • 2017
  • In this paper, an algorithm to calculate both bearing and distance error for target detection and localization is proposed using the Cramer Rao lower bound to estimate the minium variance of their error in DOA (Direction Of Arrival) estimation. The performance of arrays in detection and localization depends on the accuracy of DOA, which is affected by a variation of SNR (Signal to Noise Ratio). The SNR is determined by sonar parameters such as a SL (Source Level), TL (Transmission Loss), NL (Noise Level), array shape and beam steering angle. For verification of the suggested method, a Monte Carlo simulation was performed to probabilistically calculate the bearing and distance error according to the SNR which varies with the relative position of the target in space and noise level.