• 제목/요약/키워드: Target classification

검색결과 672건 처리시간 0.033초

MUSIC 스펙트럼을 이용한 잡음환경에서의 목표 신호 구간 검출 (Target signal detection using MUSIC spectrum in noise environments)

  • 박상준;정상배
    • 말소리와 음성과학
    • /
    • 제4권3호
    • /
    • pp.103-110
    • /
    • 2012
  • In this paper, a target signal detection method using multiple signal classification (MUSIC) algorithm is proposed. The MUSIC algorithm is a subspace-based direction of arrival (DOA) estimation method. Using the inverse of the eigenvalue-weighted eigen spectra, the algorithm detects the DOAs of multiple sources. To apply the algorithm in target signal detection for GSC-based beamforming, we utilize its spectral response for the DOA of the target source in noisy conditions. The performance of the proposed target signal detection method is compared with those of the normalized cross-correlation (NCC), the fixed beamforming, and the power ratio method. Experimental results show that the proposed algorithm significantly outperforms the conventional ones in receiver operating characteristics (ROC) curves.

능동소나 표적 인식을 위한 신호합성 및 특징추출 (Signal Synthesis and Feature Extraction for Active Sonar Target Classification)

  • 어윤;석종원
    • 한국멀티미디어학회논문지
    • /
    • 제18권1호
    • /
    • pp.9-16
    • /
    • 2015
  • Various approaches to process active sonar signals are under study, but there are many problems to be considered. The sonar signals are distorted by the underwater environment, and the spatio-temporal and spectral characteristics of active sonar signals change in accordance with the aspect of the target even though they come from the same one. And it has difficulties in collecting actual underwater data. In this paper, we synthesized active target echoes based on ray tracing algorithm using target model having 3-dimensional highlight distribution. Then, Fractional Fourier transform was applied to synthesized target echoes to extract feature vector. Recognition experiment was performed using probabilistic neural network classifier.

A Sparse Target Matrix Generation Based Unsupervised Feature Learning Algorithm for Image Classification

  • Zhao, Dan;Guo, Baolong;Yan, Yunyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권6호
    • /
    • pp.2806-2825
    • /
    • 2018
  • Unsupervised learning has shown good performance on image, video and audio classification tasks, and much progress has been made so far. It studies how systems can learn to represent particular input patterns in a way that reflects the statistical structure of the overall collection of input patterns. Many promising deep learning systems are commonly trained by the greedy layerwise unsupervised learning manner. The performance of these deep learning architectures benefits from the unsupervised learning ability to disentangling the abstractions and picking out the useful features. However, the existing unsupervised learning algorithms are often difficult to train partly because of the requirement of extensive hyperparameters. The tuning of these hyperparameters is a laborious task that requires expert knowledge, rules of thumb or extensive search. In this paper, we propose a simple and effective unsupervised feature learning algorithm for image classification, which exploits an explicit optimizing way for population and lifetime sparsity. Firstly, a sparse target matrix is built by the competitive rules. Then, the sparse features are optimized by means of minimizing the Euclidean norm ($L_2$) error between the sparse target and the competitive layer outputs. Finally, a classifier is trained using the obtained sparse features. Experimental results show that the proposed method achieves good performance for image classification, and provides discriminative features that generalize well.

펄스 도플러 레이더에서 HMM을 이용한 이동표적의 도플러 오디오 신호 식별 (Classification of Doppler Audio Signals for Moving Target Using Hidden Markov Model in Pulse Doppler Radar)

  • 심재훈;이정호;배건성
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.624-629
    • /
    • 2018
  • 감시 및 정찰용 펄스 도플러 레이더(Pulse Doppler Radar : PDR)에서 이동표적의 식별은 일반적으로 레이더 운용자의 도플러 오디오 신호 청취 및 훈련 경험을 바탕으로 수행된다. 본 논문에서는 음성인식 분야에서 널리 이용되는 Mel Frequency Cepstral Coefficients(MFCC) 특징 파라미터와 Hidden Markov Model(HMM) 식별 기법을 이용하여 이동 표적의 클래스를 자동 식별하는 방법을 제안하고, 시뮬레이션을 통해 식별성능을 분석하고 검증하였다.

건설 시공 계획 및 관리 업무의 적용을 위한 NOS 모델 구축 연구 (A Study on NOS Model System for The Construction Work Planing and Management)

  • Choi, Jaejin;Park, Hongtae
    • 한국재난정보학회 논문집
    • /
    • 제12권1호
    • /
    • pp.10-18
    • /
    • 2016
  • 본 연구는 건설 시공 계획 및 관리 업무에 NOS를 적용하기 위하여 다음과 같은 제안을 과정을 통해서 새로운 NOS 모델을 제시하였다. 먼저, 건설공사의 특성을 반영한 시설 단위 - 구조 단위 - 시공 단위 - 자원 단위의 흐름으로 공사정보분류체계의 개념을 제시하였다. 이 체계를 근거로 네트워크의 구성하고, 성과측정관리기준선의 추이를 분석하는 기준계획시간(MT : Master Target)식과 집행실적을 분석해 주는 수정계획시간(WT : Work Target) 식을 제안하여 NOS 모델을 제시하기 위한 성과측정 관리 기준선의 수립방법을 제안하였다. 최종적으로 성과측정 집행 분석 방법의 이론적 검증을 통해서 확정계약과 실비정산보수가산방식에 적합한 NOS 적용 방안을 제시하였다.

수동 소나 표적의 식별을 위한 지능형 특징정보 추출 및 스코어링 알고리즘 (Intelligent Feature Extraction and Scoring Algorithm for Classification of Passive Sonar Target)

  • 김현식
    • 한국지능시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.629-634
    • /
    • 2009
  • 실시간 시스템 적용에 있어서, 수동 소나 표적의 식별을 위한 특징정보 추출 및 스코어링 알고리즘은 다음과 같은 문제점들을 가지고 있다. 즉, 주파수 스펙트럼으로부터 PSR(Propeller Shaft Rate) 및 BR(Blade rate) 등의 특징정보를 실시간으로 구별하는 것은 매우 어렵기 때문에 정확하고 효율적인 특징정보 추출(extraction)법을 요구한다. 또한, 추출된 특징정보들로 구성된 식별 DB(DataBase)는 잡음 및 불완전한 구성을 갖기 때문에 강인하고 효과적인 특징정보 스코어링(scoring)법을 요구한다. 나아가, 구조와 파라메터에 있어서 용이한 설계 절차를 요구한다. 이러한 문제들을 해결하기 위해서 진화 전략(ES : Evolution Strategy) 및 퍼지(fuzzy) 이론을 이용하는 지능형 특징정보 추출 및 스코어링 알고리즘이 제안되었다. 제안된 알고리즘의 성능을 검증하기 위해서는 수동 소나 표적의 실시간 식별이 수행되었다. 시뮬레이션 결과는 제안된 알고리즘이 실시간 시스템 적용에서 존재하는 문제점들을 효과적으로 해결할 수 있음을 보여준다.

Classification of High Dimensionality Data through Feature Selection Using Markov Blanket

  • Lee, Junghye;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • 제14권2호
    • /
    • pp.210-219
    • /
    • 2015
  • A classification task requires an exponentially growing amount of computation time and number of observations as the variable dimensionality increases. Thus, reducing the dimensionality of the data is essential when the number of observations is limited. Often, dimensionality reduction or feature selection leads to better classification performance than using the whole number of features. In this paper, we study the possibility of utilizing the Markov blanket discovery algorithm as a new feature selection method. The Markov blanket of a target variable is the minimal variable set for explaining the target variable on the basis of conditional independence of all the variables to be connected in a Bayesian network. We apply several Markov blanket discovery algorithms to some high-dimensional categorical and continuous data sets, and compare their classification performance with other feature selection methods using well-known classifiers.

SVM 커널함수의 파라미터 값에 따른 능동소나 표적신호의 식별 성능 분석 (Analysis of target classification performances of active sonar returns depending on parameter values of SVM kernel functions)

  • 박정현;황찬식;배건성
    • 한국정보통신학회논문지
    • /
    • 제17권5호
    • /
    • pp.1083-1088
    • /
    • 2013
  • 수중 천해 환경에서 능동소나의 반향 신호로 기뢰를 탐지 및 식별하는 일은 복잡한 해양 환경의 영향으로 어려운 문제이다. SVM은 패턴인식 문제에서 최적의 해를 제공하는 이진 분류기이다. 본 논문에서는 SVM을 이용하여 능동소나의 반향 데이터로 기뢰와 같은 금속 물체와 바위를 식별하는 실험을 수행하면서, SVM에 사용되는 커널함수의 파라미터 값의 변화에 따른 식별 성능을 분석하고 제시하였다.

레이더와 비전센서 융합을 통한 전방 차량 인식 알고리즘 개발 (Radar and Vision Sensor Fusion for Primary Vehicle Detection)

  • 양승한;송봉섭;엄재용
    • 제어로봇시스템학회논문지
    • /
    • 제16권7호
    • /
    • pp.639-645
    • /
    • 2010
  • This paper presents the sensor fusion algorithm that recognizes a primary vehicle by fusing radar and monocular vision data. In general, most of commercial radars may lose tracking of the primary vehicle, i.e., the closest preceding vehicle in the same lane, when it stops or goes with other preceding vehicles in the adjacent lane with similar velocity and range. In order to improve the performance degradation of radar, vehicle detection information from vision sensor and path prediction predicted by ego vehicle sensors will be combined for target classification. Then, the target classification will work with probabilistic association filters to track a primary vehicle. Finally the performance of the proposed sensor fusion algorithm is validated using field test data on highway.

2쌍의 초음파센서를 이용한 측정면의 위치 측정 및 종류 분류 기법 (Localization and Classification of Target Surfaces using Two fairs of Ultrasonic Sensors)

  • 한영준;한헌수
    • 제어로봇시스템학회논문지
    • /
    • 제4권6호
    • /
    • pp.747-752
    • /
    • 1998
  • Ultrasonic sensors have been widely used to recognize the working environment for a mobile robot. However, their intrinsic problems, such as specular reflection, wide beam angle, and slow propagation velocity, require an excessive number of sensors to be integrated for achieving the sensing goal. This paper proposes a new measurement scheme which uses only two sets of ultrasonic sensors to determine the location and the type of a target surface. By measuring the time difference between the returned signals from the target surface, which are generated by two transmitters with 1 ㎳ difference, it classifies the type and determines the size of the target surface. Since the proposed sensor system uses only two sets of ultrasonic sensors to recognize and localize the target surface, it significantly simplifies the sensing system and reduces the signal processing time so that the working environment can be recognized in real time.

  • PDF