• Title/Summary/Keyword: Target Position Estimation

Search Result 136, Processing Time 0.026 seconds

Relative Navigation Study Using Multiple PSD Sensor and Beacon Module Based on Kalman Filter (복수 PSD와 비콘을 이용한 칼만필터 기반 상대항법에 대한 연구)

  • Song, Jeonggyu;Jeong, Junho;Yang, Seungwon;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.219-229
    • /
    • 2018
  • This paper proposes Kalman Filter-based relative navigation algorithms for proximity tasks such as rendezvous/docking/cluster-operation of spacecraft using PSD Sensors and Infrared Beacon Modules. Numerical simulations are performed for comparative analysis of the performance of each relative-navigation technique. Based on the operation principle and optical modeling of the PSD Sensor and the Infrared Beacon Module used in the relative navigation algorithm, a measurement model for the Kalman filter is constructed. The Extended Kalman Filter(EKF) and the Unscented Kalman Filter(UKF) are used as probabilistic relative navigation based on measurement fusion to utilize kinematics and dynamics information on translational and rotation motions of satellites. Relative position and relative attitude estimation performance of two filters is compared. Especially, through the simulation of various scenarios, performance changes are also investigated depending on the number of PSD Sensors and IR Beacons in target and chaser satellites.

An Analytic Solution to Projector Pose Estimation Problem

  • Lee, Joo-Haeng
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.978-981
    • /
    • 2012
  • We present an analytic solution to the projector pose estimation problem for the pinhole projection model in which the source image is a centered rectangle with an unknown aspect ratio. From a single quadrilateral given as a target image, our solution gives the position and orientation of a projector as well as the aspect ratio of a source image. The proposed method decomposes the problem into two pose estimation problems of coupled line projectors aligned at each diagonal of the given quadrilateral and then computes the common solution that satisfies the relevant geometric constraints. The solution is formulated as simple analytic equations. We also provide a determinant of projectability of an arbitrary quadrilateral.

Markerless camera pose estimation framework utilizing construction material with standardized specification

  • Harim Kim;Heejae Ahn;Sebeen Yoon;Taehoon Kim;Thomas H.-K. Kang;Young K. Ju;Minju Kim;Hunhee Cho
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.535-544
    • /
    • 2024
  • In the rapidly advancing landscape of computer vision (CV) technology, there is a burgeoning interest in its integration with the construction industry. Camera calibration is the process of deriving intrinsic and extrinsic parameters that affect when the coordinates of the 3D real world are projected onto the 2D plane, where the intrinsic parameters are internal factors of the camera, and extrinsic parameters are external factors such as the position and rotation of the camera. Camera pose estimation or extrinsic calibration, which estimates extrinsic parameters, is essential information for CV application at construction since it can be used for indoor navigation of construction robots and field monitoring by restoring depth information. Traditionally, camera pose estimation methods for cameras relied on target objects such as markers or patterns. However, these methods, which are marker- or pattern-based, are often time-consuming due to the requirement of installing a target object for estimation. As a solution to this challenge, this study introduces a novel framework that facilitates camera pose estimation using standardized materials found commonly in construction sites, such as concrete forms. The proposed framework obtains 3D real-world coordinates by referring to construction materials with certain specifications, extracts the 2D coordinates of the corresponding image plane through keypoint detection, and derives the camera's coordinate through the perspective-n-point (PnP) method which derives the extrinsic parameters by matching 3D and 2D coordinate pairs. This framework presents a substantial advancement as it streamlines the extrinsic calibration process, thereby potentially enhancing the efficiency of CV technology application and data collection at construction sites. This approach holds promise for expediting and optimizing various construction-related tasks by automating and simplifying the calibration procedure.

Improved time delay estimation by adaptive eigenvector decomposition for two noisy acoustic sensors (잡음이 있는 두 음향 센서를 이용한 시간 지연 추정을 위한 향상된 적응 고유벡터 추정 기반 알고리즘)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.499-505
    • /
    • 2018
  • Time delay estimation between two acoustic sensors is widely used in room acoustics and sonar for target position estimation, tracking and synchronization. A cross-correlation based method is representative for the time delay estimation. However, this method does not have enough consideration for the noise added to the receiving acoustic sensors. This paper proposes a new time delay estimation method considering the added noise on the receiver acoustic sensors. From comparing with the existing GCC (Generalized Cross Correlation) method, and adaptive eigen decomposition method, we show that the proposed method outperforms other methods for a colored signal source in the white Gaussian noise condition.

Projection mapping onto multiple objects using a projector robot

  • Yamazoe, Hirotake;Kasetani, Misaki;Noguchi, Tomonobu;Lee, Joo-Ho
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.45-57
    • /
    • 2018
  • Even though the popularity of projection mapping continues to increase and it is being implemented in more and more settings, most current projection mapping systems are limited to special purposes, such as outdoor events, live theater and musical performances. This lack of versatility arises from the large number of projectors needed and their proper calibration. Furthermore, we cannot change the positions and poses of projectors, or their projection targets, after the projectors have been calibrated. To overcome these problems, we propose a projection mapping method using a projector robot that can perform projection mapping in more general or ubiquitous situations, such as shopping malls. We can estimate a projector's position and pose with the robot's self-localization sensors, but the accuracy of this approach remains inadequate for projection mapping. Consequently, the proposed method solves this problem by combining self-localization by robot sensors with position and pose estimation of projection targets based on a 3D model. We first obtain the projection target's 3D model and then use it to accurately estimate the target's position and pose and thus achieve accurate projection mapping with a projector robot. In addition, our proposed method performs accurate projection mapping even after a projection target has been moved, which often occur in shopping malls. In this paper, we employ Ubiquitous Display (UD), which we are researching as a projector robot, to experimentally evaluate the effectiveness of the proposed method.

Robust Airspeed Estimation of an Unpowered Gliding Vehicle by Using Multiple Model Kalman Filters (다중모델 칼만 필터를 이용한 무추력 비행체의 대기속도 추정)

  • Jin, Jae-Hyun;Park, Jung-Woo;Kim, Bu-Min;Kim, Byoung-Soo;Lee, Eun-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.859-866
    • /
    • 2009
  • The article discusses an issue of estimating the airspeed of an autonomous flying vehicle. Airspeed is the difference between ground speed and wind speed. It is desirable to know any two among the three speeds for navigation, guidance and control of an autonomous vehicle. For example, ground speed and position are used to guide a vehicle to a target point and wind speed and airspeed are used to maximize flight performance such as a gliding range. However, the target vehicle has not an airspeed sensor but a ground speed sensor (GPS/INS). So airspeed or wind speed has to be estimated. Here, airspeed is to be estimated. A vehicle's dynamics and its dynamic parameters are used to estimate airspeed with attitude and angular speed measurements. Kalman filter is used for the estimation. There are also two major sources arousing a robust estimation problem; wind speed and altitude. Wind speed and direction depend on weather conditions. Altitude changes as a vehicle glides down to the ground. For one reference altitude, multiple model Kalman filters are pre-designed based on several reference airspeeds. We call this group of filters as a cluster. Filters of a cluster are activated simultaneously and probabilities are calculated for each filter. The probability indicates how much a filter matches with measurements. The final airspeed estimate is calculated by summing all estimates multiplied by probabilities. As a vehicle glides down to the ground, other clusters that have been designed based on other reference altitudes are activated. Some numerical simulations verify that the proposed method is effective to estimate airspeed.

Vision Based Position Control of a Robot Manipulator Using an Elitist Genetic Algorithm (엘리트 유전 알고리즘을 이용한 비젼 기반 로봇의 위치 제어)

  • Park, Kwang-Ho;Kim, Dong-Joon;Kee, Seok-Ho;Kee, Chang-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.119-126
    • /
    • 2002
  • In this paper, we present a new approach based on an elitist genetic algorithm for the task of aligning the position of a robot gripper using CCD cameras. The vision-based control scheme for the task of aligning the gripper with the desired position is implemented by image information. The relationship between the camera space location and the robot joint coordinates is estimated using a camera-space parameter modal that generalizes known manipulator kinematics to accommodate unknown relative camera position and orientation. To find the joint angles of a robot manipulator for reaching the target position in the image space, we apply an elitist genetic algorithm instead of a nonlinear least square error method. Since GA employs parallel search, it has good performance in solving optimization problems. In order to improve convergence speed, the real coding method and geometry constraint conditions are used. Experiments are carried out to exhibit the effectiveness of vision-based control using an elitist genetic algorithm with a real coding method.

Performance Evaluation of the Modified Interacting Multiple Model Filter Using 3-D Maneuvering Target (3차원 기동표적을 사용한 수정된 상호작용 다중모델필터의 성능 분석)

  • Park, Sung-Lin;Kim, Ki-Cheol;Kim, Yong-shik;Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.445-453
    • /
    • 2001
  • The multiple targets tracking problem has been one of the main issues in the radar applications area in the last decade. Besides the standard Kalman filtering, various methods including the variable dimen-sion filter, input estimation filter, interacting multiple model(IMM) filter, dederated variable dimension filter with input estimation, etc., have proposed to address the tracking and sensor fusion issues. In this pa- per, two existing tracking algorithm, i.e, the IMM filter and the variable dimension filter with input estima-tion(VDIE), are combined for the purpose of improving the tracking performance for maneuvering targets. To evaluate the tracking performance of the proposed algorithm, three typical maneuvering patterns, i.e., waver, pop-up, and high-diver motions, are defined and are applied to the modified IMM filter as well as the standard IMM filter. The smaller RMS tracking errors, in position and velocity, of the modified IMM filter than the standard IMM filter are demonstrated though computer simulations.

  • PDF

Asynchronous Guidance Filter Design Based on Strapdown Seeker and INS Information (스트랩다운 탐색기 및 INS 정보를 이용한 비동기 유도필터 설계)

  • Park, Jang-Seong;Kim, Yun-young;Park, Sanghyuk;Kim, Yoon-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.873-880
    • /
    • 2020
  • In this paper, we propose a guidance filter to estimate line of sight rate with strapdown seeker measurements and INS(Inertial Navigation System) information. The measurements of proposed guidance filter consisted of the LOS(Line of Sight) and relative position that can be calculated with the seeker's measurements, INS information and known target position, also the filter is based on an asynchronous filter to use outputs of the two sensors that are out of synchronous and period. Through the proposed filter, we can reduce the effect on parasitic loop that can be caused by using large time delay seeker and improve the estimation performance.

A Study on method to improve the detection accuracy of the location at Multi-sensor environment (다중센서 환경에서 위치추정 정확도 향상 방안 연구)

  • Na, In-Seok;Kim, Yeong-Gil;Jung, Ji-Hoon;Jo, Je-Il;Kim, San-Hae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.337-340
    • /
    • 2011
  • In location finding system using spaced multi-sensor, Depending on the signal source's location and the location of the sensors Position estimation accuracy is determined. This phenomenon is called GDOP effect. and to minimize these effects, research is needed on how. In this paper, I will describe how to minimize GDOP effect, estimating GDOP using angle of arrivals of multi sensors, and removing sensor error factor.

  • PDF