
We present an analytic solution to the projector pose 
estimation problem for the pinhole projection model in which the 
source image is a centered rectangle with an unknown aspect 
ratio. From a single quadrilateral given as a target image, our 
solution gives the position and orientation of a projector as well 
as the aspect ratio of a source image. The proposed method 
decomposes the problem into two pose estimation problems of 
coupled line projectors aligned at each diagonal of the given 
quadrilateral and then computes the common solution that 
satisfies the relevant geometric constraints. The solution is 
formulated as simple analytic equations. We also provide a 
determinant of projectability of an arbitrary quadrilateral. 

Keywords: Coupled line projectors, projector calibration, 
spatial augmented reality, projectability, inverse projection. 

I. Introduction 

A projector pose estimation problem aims to compute the 
position and orientation of a video projector using known 
information, such as a projection model, an image projected in 
the environment, and its correspondence with a 2D source 
image. It is a fundamental problem in spatial augmented reality 
[1] and projector-camera systems [2] in which the primary 
display device is a video projector. 

This problem is similar to the camera pose estimation in 
photogrammetry and computer vision [3], which has been 
intensively studied to produce mature solutions: that is, the 
perspective-n-point (PnP) problem [4], quadrilateral targets [5], 
self-calibration [6], and practical methods [7]. 

The pose estimation of cameras and projectors is modeled 
using the same pinhole projection model. However, there exists 
a fundamental difference in geometric constraints. For example, 
                                                               

in the case of a camera, geometric constraints, such as parallel 
lines and perpendicular angles, are specified in the scene 
geometry. In a projector, however, the constraint is set on the 
image side: that is, a source image should be a rectangle. Hence, 
an existing solution for a camera cannot be directly applied to a 
projector, which is the main motivation of this work. 
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Many previous methods for projector pose estimation and 
calibration rely on a calibrated camera to capture the geometry 
of projected patterns and then compute the homography to find 
a relative pose of a projector from a known camera pose [8]- 
[10]. However, little is known regarding the minimum 
geometric requirement to estimate the absolute pose of an 
uncalibrated projector. 

In this letter, we propose an analytic solution to the projector 
pose estimation problem for the pinhole projection model in 
which the source image is a centered rectangle with an 
unknown aspect ratio. When a quadrilateral is given as a 
projected image in the environment, our solution gives the 
position and orientation of a projector as well as the aspect ratio 
of a source rectangle. It implies that a single quadrilateral is 
sufficient to estimate both intrinsic and extrinsic parameters of 
a pinhole projector. 

In section II, we use the proposed method to decompose the 
problem into two pose estimation problems of line projectors 
aligned for each diagonal of the given quadrilateral. Then, in 
section III, we compute the common solution that satisfies the 
geometric constraints. The solution is formulated as simple 
equations. We also propose a determinant condition for 
projectability of an arbitrary quadrilateral. 

II. Pose Estimation of Line Projector 

In this section, we describe the analytic solution to the pose 
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Fig. 1. Geometric configuration of line projector. 
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estimation problem for a line projector, which is the basis on 
which we derive the solution of the main problem in section III.  

1. Configuration 

When a source line segment Ls is projected on a target plane 
P, we get a target line segment Lt as a projected image of Ls 
(see Fig. 1). If we have prior knowledge of both intrinsic and 
extrinsic parameters of a line projector (that is, field of view ψ, 
center of projection pc, and direction of the principal axis) as 
well as the geometry of a target plane P (that is, normal vector 
and origin), we can compute the target image Lt precisely. 

2. Problem Definition 

As an inverse process, the problem is to find both intrinsic 
and extrinsic parameters of a projector from a target image. 

Let a given target image Lt be specified with two endpoints, 
v0 and v2, and a projected midpoint, m∈Lt, through which the 
principal axis passes. 

We assume that the unknown source image Ls is aligned 
such that the principal axis passes through its midpoint ms. 
Hence, two angles, ∠mpcv0 and ∠mpcv2, are identical as ψ. 
Note that ψ is an unknown intrinsic parameter that 
corresponds to the lens effect or field of view. 

Let d be the length of the principal axis from pc to m and the 
angle ∠pcmv0 be the orientation θ of the principal axis 
measured from the target plane P. The unknowns, d and θ, are 
extrinsic parameters that determine the pose of a projector. 

3. Extrinsic Parameter 

With two length coefficients from a target image, 

0 || ||l mv= 0  and 2 2|| ||l mv= , the areas of two triangles, 
and have the ratio l0cp mvΔ 2 ,cp mvΔ 0:l2. Since two angles, 

∠mpcv0 and ∠mpcv2, are identical as ψ, the lengths of two sides, 

0 || ||c 0s p v=  and 2 2|| ||,cs p v=  have the same ratio l0:l2. 
Since s0 and s2 can be further described with l0, l2, d, and θ as  
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we can derive the following relation between d and θ: 
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where  is a coefficient solely defined by 
the target image.  

2 0 0 2( ) / 2l l l lα = −

4. Intrinsic Parameter 

From the configuration of Fig. 1, we can derive the 
following relations: 
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These relations and (1) can be combined to derive the 
relation between the extrinsic and intrinsic parameters, θ and ψ, 
as follows:  
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= = =
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)

   (2) 

where 0 2 2 0( ) / (l l l lβ = + −  is a coefficient solely defined 
by a given target image.  

5. Remarks 

Since (1) and (2) with three parameters (d, θ, and ψ) are 
under-constrained, we need to confine one parameter to 
determine the values of others. For example, when the length d  
is chosen such that 0 1/d α< ≤ ,

α
 we can find the 

orientation  using (1). Then, the field of view 
ψ can be computed using (2). 

1cos ( )dθ −=

III. Pose Estimation of a Rectangle Projector 

Using the solution of section II, we describe the analytic 
solution to our main problem.  

1. Configuration 

We assume that the target image is given as an arbitrary 
convex quadrilateral, Qt, with four vertices, vi, and that its 
source image is a rectangle, Qs, of an unknown aspect ratio (see 
Fig. 2). An additional condition is that the source image Qs is 
well aligned such that the principal axis, which starts from an 
unknown center of projection Pc, passes through its midpoint  
ms and is perpendicular to Qs. 

2. Problem Definition 

The main problem in this letter is to find the pose of a 
projector while satisfying the standard pinhole projection 

ETRI Journal, Volume 34, Number 6, December 2012 Joo-Haeng Lee   979 



 

Fig. 2. Geometric configuration of rectangle projector. 
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Fig. 3. Two line projectors defined for each diagonal. 
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constraint such that the source image is a rectangle although its 
aspect ratio is not constrained. 

In a perspective projection, each diagonal of the source 
rectangle Qs is projected to a diagonal of the target quadrilateral 
Qt while preserving the projective correspondence between the 
midpoint ms of Qs and the intersection point m of two diagonals 
of the target quadrilateral Qt.  

This implies that we can decompose the problem into two 
subproblems of a line projector for each diagonal (as in Fig. 3) 
and that a common solution for these subproblems becomes 
the final solution to the pose estimation of a rectangle projector. 
The geometric constraint for a rectangle source image is 
satisfied when two field-of-view angles of each line projector 
are identical. We elaborate on the details in the following. 

3. Formulation 

For a target quadrilateral, Qt, its projected midpoint m can be 
computed as an intersection of two diagonals: 0 0 2g v v=  and 

1 1 3.g v v=  A pair of coefficients, αi and βi, is defined for each 
diagonal,  and m, and the solution for each line 
projector is described using (1) and (2): 

( {0,1}),ig i ∈

cos ,i i idθ α=                    (3) 

tan tan .i i iθ β ψ=                 (4) 

Since two line projectors of Fig. 3 share the center of 
projection, the lengths between m and Pc should be identical: 
d0=d1≡d. Moreover, the fields of view should also be identical 
to define a rectangle source image: 0 1 .ψ ψ ψ= ≡  These 
geometric constraints can be formulated into two equations 
with two unknowns, θ0 and θ1, as 

1 0 0 1cos cos ,α θ α θ=               (5) 

1 0 0 1tan tan .β θ β θ=               (6) 

4. Solution 

Using the trigonometric identity,  
we can derive the following equation from (5) and (6): 

2 2cos 1/ (1 tan ),θ θ= +

2 2 2 2
0 0cos 1/ (1 tan )A Bθ = + θ          (7) 

with the known values of diagonal length coefficients 
 and 1 0/A α α= 1 0/ .B β β=  While satisfying the field-of-  

view constraint 1tan (1/ ) tan 0,iψ β θ= >  (7) can be further 
reduced to the following form: 

2 2

0 2

1cos .
1

A B

A B
θ −=

−
               (8) 

Now, we can apply (8) to (5) to compute   1cos .θ
Since we know the values of the orientation θi of two line 

projectors, we can find the values of distance d and field of 
view ψ using (3) and (4). Since the common solution of two 
subproblems is known, we can find the actual projector 
parameters as follows. 

5. Projector Parameters 

Now, the 3D coordinates of the center of projection 
 can be computed as follows. Assume that 

the projected midpoint is the origin of the coordinate system: 
m=(0, 0, 0). Let the projection of P

( , , )cP x y z= ≠ m

c onto the xy-plane be 
( , ,0)cP x y=  and the angle between the x-axis and the 

diagonal vector (vi–m) be .iφ Now, the unit vector 
/ || ||i i iv v v= can be represented as (cos ,sin ,0).i i iv φ φ=  It 

is clear that the following equation holds for  {0,1}:i ∈

, ,c i c iP v P v= .

0

               (9) 

Using (9) and related definitions, we can derive three 
equations, which can be easily solved for Pc=(x, y, z): 

0 0cos sin cos ,x y dφ φ θ+ =          (10) 

1 1cos sin cos ,x y d 1φ φ θ+ =            (11) 
2 2 2 2(z d x y= − + ).               (12) 

Since we have the complete projection frustum (in Fig. 2) 
defined by Pc and Qt, it is straightforward to compute the other 
projector parameters. For example, we can find the canonical 
geometry of a source rectangle and its aspect ratio.  

6. Existence of Solution 

Existence of the analytic solution to (8) can be determined 
with the following condition that is solely defined with the 
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diagonal length coefficients A and B of (7): 

or
         (13) 

2 2 2 2

2 2 2 2

( 1and 1and 1)

( 1and 1and 1).

A B A B

A B A B

> < <

< > >

This condition can be used as a determinant of projectability 
for a given target quadrilateral before explicit computation of 
pose estimation and projector parameters. 

The final condition for existence of the solution is as follows: 

0 1 0 1| | qθ θ θ θ θ− ≤ ≤ + ,

1

            (14) 

in which θq is the angle between two diagonals (see Fig. 2): 
. Equation (14) is the angular constraint that 

combines two subproblems in a geometric manner. Note that 
we can find the common solution of two subproblems as in 
subsection III.4 regardless of satisfying (14). However, the 
center of projection P

0q v mvθ = ∠

c=(x, y, z) in subsection III.5 cannot be 
found without satisfying this last condition (14). 

IV. Examples of Projector Pose Estimation 

In Fig. 4, the aspect ratio of a source rectangle is denoted by r. 
Each quadrilateral Qt (in the right column of Fig. 4) is 
represented as a canonical form: two diagonals intersect at the 
origin m=(0, 0, 0), and the first diagonal is aligned on the x-axis 
and has the unit length ||g0||=1. The unknown four parameters, 
that is, the diagonal parameters, are as follows: the length of 
the second diagonal ||g1||, the angle and two 
ratios defined for each diagonal t

0 1,q v mvθ = ∠
i=||mvi||/||gi||. 

V. Conclusion 

In this letter, we presented an analytic solution to the projector 
pose estimation problem by decomposing the problem into two 
subproblems of coupled line projectors. We also presented the 
determinant of projectability for an arbitrary quadrilateral. 

The proposed solution can be the theoretic basis of more 
practical applications [1], [2]. For example, an interesting 
future work will be planning multiple projectors to cover a 
complex indoor area. We must extend our framework to handle 
the case in which the projection screen is nonplanar [11]. 
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